
C
Homework
Collection

Göktürk Üçoluk

METU DEPARTMENT OF COMPUTER ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

C ASSIGNMENT COLLECTION

by

Dr. Göktürk Üçoluk

METU

2009

CONTENTS i

Contents

1 CONVEX HULL 1

2 NONSENSE STACK MACHINE 4

3 PARTS INVENTORY 10

4 SHORTEST PATH 13

5 SKY LINER 16

6 PROPOSITIONAL LOGIC FORMULAS 18

7 DRAWING NARY TREES 21

8 MINIMAL SPANNING TREE 26

9 TURKISH HYPHENATION 30

10 SEXPR TOKENIZER 32

11 SEXPR PARSER 38

12 SEXPR UNIFIER 45

13 MARKETING POLICY 48

14 POLYGON CLIPPING 50

15 ANOTHER NONSENSE STACK MACHINE 52

16 MANY BODY PROBLEM 55

17 POLYNOMIAL ALGEBRA 61

18 GENETIC ALGORITHMS-I 65

19 GENETIC ALGORITHMS-II 71

20 GENETIC ALGORITHMS-III 74

21 DNA FINGERPRINTING 81

22 WHERE TO MEET ON THE GLOBE? 85

23 LARGEST COMMON SUBTREE 88

24 MENDELIAN GENETICS 90

Copyright ©Göktürk Üçoluk 2009

ii CONTENTS

25 CHARACTER SEQUENCE 96

26 MASTERMIND 98

27 BALANCING CHEMICAL EQUATIONS 101

28 PARTS INVENTORY (variant) 104

29 BUYING BY INSTALMENT 108

30 PAYMENT PLANING BY SIMULATED ANNEALING 110

31 LOGIC CIRCUIT SIMULATION 120

32 MAP EXTRACTION 125

33 SYMBOLIC DERIVATIVE 133

34 MODIFIED QUADTREES 136

35 FOURIER TRANSFORM 141

36 CONTROLLING ELEVATORS 143

37 MATH EXPRESSION PARSING & PRINTING 149

38 FINDING ROOTS BY NEWTON-RAPHSON 152

39 CHESS EVALUATION FUNCTION 155

40 ESCAPING A LABYRINTH 160

41 CT IMAGING - I (Radon Transform) 164

42 CT IMAGING - II (Inverse Radon Transform) 171

43 FUZZY SET ALGEBRA 175

44 ZERMELO NAVIGATION PROBLEM 181

45 WHAT LANGUAGE? 185

46 GRAPH MERGING 187

Copyright ©Göktürk Üçoluk 2009

CONVEX HULL 1

1 CONVEX HULL ’95 HOMEWORK 1

Problem

Consider a set of points in a plane which are represented 2-tuples of real numbers [x, y].
We’re interested in the boundaries of the point set. Often, when we have a large number
of points to process, people looking at a diagram of a set of points plotted in the plane,
have little trouble distinguishing those on the ”inside” of the point set from those lying
on the edge.

The mathematical way to describe the natural boundary of a point set depends on a
geometric property called convexity. This is a simple concept that you have encountered
before: a convex polygon has the property that any line connecting any two points inside
the polygon must itself lie entirely inside the polygon. For example the below given
polygon is nonconvex;

on the other hand, any triangle or rectangle is convex.
Now, the mathematical name for the natural boundary of a point set is the convex

hull. The convex hull of a set of points in the plane is defined to be the smallest convex
polygon containing them all. Equivalently, the convex hull is the shortest path sur-
rounding the points. An obvious property of the convex hull that is easy to prove is that
the vertices of the convex polygon defining the hull are points from the original point
set. Given N points, some of them form a convex polygon within which all the others
are contained. The problem is to find those points.

Below a sample set of points and their convex hull is shown.

Copyright ©Göktürk Üçoluk 2009

2 CONVEX HULL

There are 9 points on the hull of the set. In general, the convex hull can contain as
few as three points (if the three points form a large¿triangle containing all the others)
or as many as all the points (if they fall on a convex polygon, then the points comprise
their own convex hull). The number of points on the convex hull of a “random” point
set falls somewhere in between these extremes.

A fundamental property of the convex hull is that any line outside the hull, when
moved in any direction towards the hull, hits it at one of its vertex points. (This is an
alternate way to define the hull: it is the subset of points from the point set that could
be hit by a line moving in at some angle from infinity.) In particular, it’s easy to find a
few points guaranteed to be on the hull by applying this rule for horizontal and vertical
lines: the points with the smallest and largest x and y coordinates are all-on the convex
hull. This is a fact that you can make use of in determining your starting point.

The input to an algorithm for finding the convex hull is of course an array of points;
the output is a polygon, also represented as an array of points with the property that
tracing through the points in the order in which they appear in the array traces the
outline of the polygon. On reflection, this might appear to require an extra ordering
condition on the computation of the convex hull (why not just return the points on the
hull in any order?), but output in the ordered form is obviously more useful, and it has
been shown that the unordered computation is no easier to do. It is convenient to do the
computation in place: the array used for the original point set can also be used to hold
the output. The algorithms simply rearrange the points in the original array so that the
convex hull appears in the first M positions, in order.

It is helpful to view finding the convex hull of a set of points as a kind of “two-
dimensional sort” since frequent parallels to sorting algorithms arise in the study of
algorithms for finding the convex hull.

As with all geometric algorithms, we have to pay some attention to degenerate cases
that are likely to occur in the input. For example, what is the convex hull of a set of
points all of which fall on the same line segment? Depending upon the application, this
could be all the points or just the two extreme points, or perhaps any set including the
two extreme points would do. Though this seems an extreme example, it would not be
unusual for more than two points to fall on one of the line segments defining the hull of
a set of points. For your algorithm, we won’t insist that points falling on a hull edge be
included, since this generally involves more work. On the other hand, we won’t insist
that they be omitted either, since this condition could be tested afterwards if desired.

Package-Wrapping Method

The most natural convex hull algorithm, which parallels how a human would draw
the convex hull of a set of points, is a systematic way to ”wrap up” the set of points.
Starting with some point guaranteed to be on the convex hull (say the one with the
smallest y coordinate), take a horizontal ray in the positive direction and “sweep” it
upward until hitting another point; this point must be on the hull. Then anchor at that
point and continue “sleeping” until hitting another point, etc., until the “package” is
fully “wrapped” (the beginning point is included again).

Copyright ©Göktürk Üçoluk 2009

CONVEX HULL 3

Of course, we don’t actually need to sweep through all possible angles (Why?).
[Hint: Implementing a function theta(x1, y1, x2, y2) that returns the angle between
the horizontal and the line from point (x1, y1) to point (x2, y2) will be of great help!]

I/O Specifications:

Your program will read the (x, y) pair of coordinates from the standard input and print
the convex-hull specifying pairs in the counter-clockwise traverse order to the standard
output. You are given that there are at most 2000 points. Each pair of coordinates are
represented as two floating point numbers in a single line separated by at least one blank
(No information (like an integer at the start of the input) of how many actual lines are
present is provided from the input!).

Copyright ©Göktürk Üçoluk 2009

4 NONSENSE STACK MACHINE

2 NONSENSE STACK MACHINE ’95 HOMEWORK 2

Background Information

One of the most useful concepts in computer science is that of the stack. A stack is an
ordered collection of items into which new items may be inserted and from which items
may be deleted at one end, called the top of the stack.

Unlike as for the array, the definition of the stack provides for the insertion and
deletion of items, so that a stack is a dynamic, constantly changing object. The question
therefore arises, how does a stack change? The definition specifies that a single end
of the stack is designated as the stack top. New items may be put on top of the stack
(in which case the top of the stack moves upward to correspond to the new highest
element), or items which are at the top of the stack may be removed (in which case the
top of the stack moves downward to correspond to the new highest element). To answer
the question, which way is up? we must decide which end of the stack is designated as
its top–that is, at which end items are added or deleted.

The two changes which can be made to a stack are given special names. When an
item is added to a stack, it is pushed onto the stack, and when an item is removed, it is
popped from the stack.

Given a stack an item i, performing the operation push(i) adds the item i to the top
of the stack. Similarly, the operation pop() removes the top element and returns it as a
function value. Thus the assignment operation

i = pop();

removes the element at the top of the stack and assigns its value to i .
There is no theoretical upper limit on the number of items that may be kept in a stack

(though a practical limit certainly will exist), since the definition doesn’t specify how
many items are allowed in the collection. Pushing another item onto a stack merely
produces a larger collection of items. However, if a stack contains a single item and
the stack is popped, the resulting stack contains no items and is called the empty stack.
Although the push operation is applicable to any state of the stack, the pop operation
cannot be applied to the empty stack because such a stack has no elements to pop.
Therefore, before applying the pop operator to a stack, we must ensure that the stack is
not empty. The operation empty() determines whether or not a stack is empty. If the
stack is empty, empty() shall return a value meaning TRUE; otherwise it shall return a
value meaning FALSE.

Another operation that can be performed on a stack is to determine what the top
item on a stack is without removing it. This operation is written as stacktop() and
returns the top element of the stack. Like the operation pop, stacktop is not defined
for an empty stack. The result of an illegal attempt to pop or access an item from an
empty stack is called underflow. Underflow can be avoided by ensuring that empty()
is false before attempting the operation pop() or stacktop() .

Copyright ©Göktürk Üçoluk 2009

NONSENSE STACK MACHINE 5

In an imperative language (like C) a stack is usually implemented as a one dimen-
sional array of the type of its intended elements. Although the array structure enables
random access to any element, the programmer restricts him/herself to use the func-
tions

• push(△)

• pop()

• stacktop()

• empty()

only. So, his/her first job is to implement these four functions that perform the stack
operation. These four functions will be accessing the one dimensional array, and mod-
ify/query it. It is a trivial fact that at each push() and pop() operation the contents
of the whole array is not moved (practically). Instead of this, in a global variable, the
index of the last-put (topmost) element in the array is kept and at every push() and
pop() operation this variable is modified in order to represent the last situation.

On the next page examples of some possible actions on a stack are tabulated (assum-
ing C as the implementation language)

Copyright ©Göktürk Üçoluk 2009

6 NONSENSE STACK MACHINE

INSTRUCTION FINAL STATE RESULT OF THE ACTION

OF THE STACK

push(3);
3

The value 3 is placed on the stack.

push(-7);
-7

3

Similarly another value of -7 is

placed on the stack.

i = pop();
3

The last put value, namely -7 is

removed from the stack, and this

value is assigned to the variable i .

push(20);
20

3

The value 20 is placed on the stack.

push(589);
589

3

20

The value 589 is placed on the

stack.

pop();
20

3

The last pushed value, 589 , is re-

moved from the stack. since the re-

turned value is not used it is lost.

j = stacktop();
20

3

The topmost value, namely 20 is

returned and hence assigned to j ,

unlike pop() , this value is not re-

moved from the stack.

j = empty();
20

3

j receives a value of 0 indicating

that the stack is not empty.

pop();pop(); Two top values of the stack are dis-

posed. Since they are not saved, the

values are lost.

pop(); ? ERROR. The stack was empty!

Problem

In this homework you are going to implement a stack and using it, following some rules
given below, you will be pushing and popping elements from this stack. The whole task
is to output the single number that is at the top of the stack after that procedure is carried
out.

Copyright ©Göktürk Üçoluk 2009

NONSENSE STACK MACHINE 7

1. You will be reading natural numbers from the standard input (keyboard), one by
one till an End-of-File (control-D) is inputted.

2. Any number such arrived is pushed onto the stack.

3. The top of the stack is examined:

• If it is not a prime number nothing is done, with step (1) the process contin-
ues.

• If it is a square number (i.e. is a square of another integer) then it is replaced by
its square root. The process continues from step (3). (See below for restrictions)

• If it is a prime number then a (modulo 3) operation on the number is per-
formed:

– If the outcome is 1 then the prime number is discarded from stack (popped),
then the following two numbers that are on the stack are popped and mul-
tiplied, the result is pushed onto the stack. Process continues from step
(3).

– If the outcome is 2 then the prime number is discarded from stack (popped),
then the following two numbers that are on the stack are popped and
added, the result is pushed onto the stack. Process continues from step
(3).

– If the outcome is 0 then the same procedure as above is carried out, pro-
vided that the two numbers are subtracted (The smaller one is subtracted
from the bigger one, so the result is still a natural number).

(See restrictions below)

4. When there is no more input (EOF case), print the top of the stack.

Restrictions

• You are not allowed to use mathematical library functions, like those in math.h .
Also you are not allowed to implement and use ‘Taylor Expansion’ (series ex-
pansion) of functions. i.e. taking square root shall be done by implementing the
high-school-method.

• All numbers coming from the input will be ≥ 0. You don’t have to perform an
additional check on it.

• A pop with an empty stack is an error. Your program shall check this always. If at
any stage the procedure requires this illegal operation it shall abort with exactly
the following output:

error

Copyright ©Göktürk Üçoluk 2009

8 NONSENSE STACK MACHINE

• The input/output specifications are extremely tight. The input is: natural num-
bers entered one-per-line, and the input is terminated by an Control-D. The output
is: A single natural number or the above defined error message. No blank lines, no
additional information strings, NOTHING!

• Use long int type for the variables that will hold natural numbers (and also for
the type of the stack elements!).

For your information: To read/print a long int type value the format string
used in printf /scanf shall contain a corresponding %ld .

Example

Consider the input of:

2
102
150
27
81
625
49
Control-D

The expected output is a single line

30

For your convenience we include the picture of the stack after each internal change
(spying at it at step (3)) during the calculation process. (You are not going to output
this information)

Copyright ©Göktürk Üçoluk 2009

NONSENSE STACK MACHINE 9

⇓ Stack bottom
2
2 102
2 102 150
2 102 150 27
2 102 150 27 81
2 102 150 27 9
2 102 150 27 3
2 102 150 27 0
2 102 123
2 102 123 625
2 102 123 25
2 102 123 5
2 102 123 2
2 125
2 15
2 15 49
2 15 7
2 15 1
30

Copyright ©Göktürk Üçoluk 2009

10 PARTS INVENTORY

3 PARTS INVENTORY ’95 HOMEWORK 3

Problem

In this homework the purpose is to construct a parts inventory.

Suppose we work in a bicycle factory, where it is necessary to keep an inventory of
bicycle parts. If we want to build a bicycle, we need to know what is the total cost of the
parts. Each part of the bicycle may have sub-parts, for example each wheel has some
spokes, a rim and a hub. Furthermore, the hub can consist of an axle and some gears.
Let us consider a tree-structured database that will keep the information of which parts
are required to build a bicycle (or any other composite object). There are two kinds of
parts that we use to build our bicycle (or generally any such composite object). These
are assemblies and basic parts. Each assembly consists of a quantity of basic parts and
(may be) a quantity of other assemblies. Since it is possible to calculate the price of any
composite part, only the unit price for the basic parts are provided. Below you see such
a tree: In this case, for example, a gear has a unit price of 25.0 and you will need 2 such

WHEEL FRAME

AXLE

NUTBOLT

SPOKERIM HUB REARFRAME FRONTFRAME

FORK

25.0

BIKE

2 1

HANDLE

1

11 11

5

1

2 1

7

2

GEAR

60.0 120.0

0.1 0.15

175.0

10.022.5

gears to make a hub.

Your program will input the structure of the composition and the prices of the basic
parts through a dialog with the user, and then output the price of the constructed object
(in the example the total cost to built a bike!). Here is the exact dialog between the user
and your program:

Copyright ©Göktürk Üçoluk 2009

PARTS INVENTORY 11

Computer: what will you define?
User: bike

Computer: what is bike?
User: 2* wheel+1 * frame

Computer: what is wheel?
User: 1* rim+1 * spoke+1 * hub

Computer: what is rim?
User: 60.

Computer: what is spoke?
User: 120.

Computer: what is hub?
User: 2* gear+1 * axle

Computer: what is gear?
User: 25.

Computer: what is axle?
User: 5* bolt+7 * nut

Computer: what is bolt?
User: 0.1

Computer: what is nut?
User: 0.15

Computer: what is frame?
User: 1* rearframe+1 * frontframe

Computer: what is rearframe?
User: 175.

Computer: what is frontframe?
User: 1* fork+2 * handle

Computer: what is fork?
User: 22.5

Computer: what is handle?
User: 10.

Computer: total cost for bike is 780.60

The data structure that your program shall construct on-the-fly is given on the fol-
lowing page. As you see, no constant sized memory structures are used at all. The only
assumption that you are allowed to make is that no numerical overflow will occur nei-
ther at the input nor in the computations and no description input of a composite object
will extend over 80 characters (and will be given in a single line).

Hints and Instructions

• Your program shall ignore spaces, provided that they do not occur in numbers,
and the name strings. That means it is valid to input one of the lines above as :
(below () is representing a space)

1* rim +1 * spoke +1* hub

Copyright ©Göktürk Üçoluk 2009

12 PARTS INVENTORY

"BIKE"

1 2

"REARFRAME"

"NUT"

"RIM"

"SPOKE"

"HANDLE"

"GEAR"

"FORK"

"WHEEL"

"FRAME"

"HUB"

"AXLE"

"FRONTFRAME"

1

1

1

1

1

1

1 1 1

1

1 1

1 1

2

5 7

0

0

0

0
0

0

0

0

120.0

60.0

25.0

0.1

0.15

10.0

22.5

175.0

"BOLT"

• You shall make extensive use of the functions defined in string.h . Especially:
the str *() functions and the *to *() functions.

• Get each line of user input with gets() function, and then process it.

• DO NOT even think of storing the input lines first and then process them all to-
gather. This is not possible. The program must intelligently ask questions at each
step.

• Use RECURSION.

• For the node representation: Either use unions or define two different structures
and perform your own casting. If you are not very confident prefer unions.

• Test your program for several cases, check the results manually.

• Since your programs are graded using some automated i/o DO NOT beatify your
messages, and the form of the output. Do it exactly as it is shown in the example.

Copyright ©Göktürk Üçoluk 2009

SHORTEST PATH 13

4 SHORTEST PATH ’95 HOMEWORK 4

Problem

In this homework the purpose is to find the shortest path in a given road system be-
tween two cities.

Cities are connected to other cities through roads of various lengths. Roads can
be used in either direction. As you would expect, a frequently occurring case is that
between two cities there might not be a road. If that is the case the way to travel form
one city to the other will be via other cities. The input is guaranteed to be such that for
any two cities there exists at least one path that connects them. Also it could be the case
that there exists more than one such paths. It could also happen that between two cities
there is a road (but not more than one) and other paths (via other cities) that connect
them.

Below you see an example of such a road map.

25

Burronymede

Bonampak

Finiguerra

Castrovalva

Tumbolia

Verbum

Xantu

Djinn

MauYaxchilan

120

90

55 20
Glazunkia

30 50

75

30
30

30
45

40

20

180

Mestre

With this map to hand the answer of the question:

What is the shortest path between Finiguerra and Djinn and how long is it?

is:

Finiguerra–Bonampak–Glazunkia–Verbum–Djinn
Total path length: 160

The solutions of this type of problems are well known in computer science and are
classified as “Shortest Path Algorithms”.

Copyright ©Göktürk Üçoluk 2009

14 SHORTEST PATH

Specifications

• Your program shall read the map information from a file which name will be pro-
vided as the first comment line argument to the program. No existence check is
required. This map information which will be provided in the below described
format.

• The file constitutes of lines each of which corresponds to a road between two cities.
There is no predefined order of the lines, in the file. A line is made of 3 entries
which are separated by at least one blank. The first and the second entry are the
names of the cities which are connected by a road. The third (last) entry in the line
is an natural number corresponding to the length of that road. A name of a city is
a single word which is made of letters (Hence New Mexico is not a valid city name
in this homework). The naming is case sensitive, upper cases are distinct from lower
cases.

Here is a file which would be one of the descriptions of the above given map.

Burronymede Tumbolia 120
Yaxchilan Burronymede 25
Yaxchilan Glazunkia 90
Yaxchilan Bonampak 55
Bonampak Finiguerra 20
Bonampak Glazunkia 20
Finiguerra Djinn 180
Castrovalva Mestre 75
Castrovalva Verbub 50
Mestre Xantu 30
Mestre Mau 30
Mau Xantu 30
Mestre Djinn 45
Djinn Verbum 40
Glazunkia Castrovalva 30

The file (as shown) will not include any information of how many lines it includes.

• The program will input the name of the two cities which are the end points of the
searched shortest path through a dialogue:

Computer: Enter the cities:
User: Finiguerra Djinn

Again the names will be input by seperating them by at least one blank.

• If there exists a shortest path, the output will consist of two lines:

First line: Length of the shortest path.

Copyright ©Göktürk Üçoluk 2009

SHORTEST PATH 15

Second line: The name of the cities passed on the shortest path, seperated with
a single blank. This sequence shall start with the first name which the user
input, and end with the second name the user input. If there exist more than
one shortest paths then any one of them shall be output.

For the above given example the expected output is:

160
Finiguerra Bonampak Glazunkia Verbum Djinn

If it was found that there exist no path then the output shall consist of a single line
which is exactly the following (starting from the first character):

*** NO PATH***

• You can make the assumption that the file and the user input is error-free, so there
is no need to perform error checks.

• You are forced to use dynamic memory allocation for any array in your program.
So, the use of static or auto array declarations is forbidden.

Evaluation

• A program submitted after the due date/time will be graded zero.

• A program that uses compile-time defined arrays will be graded zero.

• A working program (in the terms defined above) will receive 40 points, otherwise
it will be graded zero. Here the term “working” means to run at least the same
speed of a program which will be made execute-accessible to you. You will also
be provided with some ‘large-sized’ test data. (Check tin for further announcements)

• Your program will receive an additive point P depending on its execution time,
calculated as follows:

P = 60× T imeLongest − T imeY our program

T imeLongest − T imeShortest

Here T imeShortest is the execution time of the best performing submission. T imeLongest

is the execution time of the worst but ‘working’ (in the above defined terms) sub-
mission.

• All submissions will be compiled and run under strictly equal conditions.

Copyright ©Göktürk Üçoluk 2009

16 SKY LINER

5 SKY LINER ’96 HOMEWORK 1

Problem

This problem is known as the Sky Liner Problem. It can be summarized as follows:
Assume you are looking at a city from a very long distance, the sun is behind the city
(from your point of view). You will not be able to recognize individual buildings. The
whole city will be observed as a silluette. The problem is:

Assume you are given the dimensions of the shadow of each building which
is a rectangular. Furthermore each of these rectangulars are placed on a com-
mon line (the ground) and extent in the same direction (upwards). In addi-
tion to the dimensions you are also given the positions of each rectangular.
Your duty, if you accept, is to find the vertices of the broken line that sur-
rounds the silluette.

Example

Consider the below given example

10x7

12x4

5x9 3x9

2x3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

3x11

As given in the picture above, there are 6 rectangulars. which could be listed as

WIDTH HEIGHT POSITION ON GROUND

3 11 3
10 7 1
5 9 9

12 4 8
3 9 17
2 3 19

‘Position on Ground’ is the position of the lower-left corner of the rectangular. We will
represent the broken line that surrounds the silluete by a ordered set of vertices where
the leftmost vertice on the broken line is stated at the leftmost position of the set, then

Copyright ©Göktürk Üçoluk 2009

SKY LINER 17

the one which is next on the broken line is following it, etc. A vertex inforamtion will
be represented by a 2-tuple:

(Position on Ground, Height)

So for this example the solution would be

[(1, 0), (1, 7), (3, 7), (3, 11), (6, 11), (6, 7), (9, 7), (9, 9), (14, 9),

(14, 4), (17, 4), (17, 9), (20, 9), (20, 3), (21, 3), (21, 0)]

Specifications

• Your program will read the Width, Height, Position on Ground information from
the standart input. You are given that there are at most 2000 rectangles. Each input
line will contain 3 integers corresponding to the information of one of the rect-
angles. (There will be no other characters on the line except these three numbers which
are seperated from each other by blanks only). No information (like an integer at the
start of the input) of how many actual lines are present in the input will be given!
The input will terminate with the END-OF-FILE character (ctrl-D on the UNIX
system).

A possible input for the example above is:

3 9 17
5 9 9
12 4 8
3 11 3
10 7 1
2 3 19

cntr-D

• There is no order is imposed on the input lines. This means that a rectangle’s
information can be given at any moment of the input process.

• The output is made to the standart output. The output will contain the vertex infor-
mation of the solution in the order specified in the previous subsection. You don’t
have to output each vertex information on a new line. It is allowed to put them
all in a single line separated by at least one blank. Though, not doing so, (i.e. out-
putting each vertex information on a new line), is also ok. A vertex infomation on
the output is two integers separeted by at least one blank. The first integer is the
Position on Ground and the second is the Height of the vertex.

The expected output for the above given example is:

1 0 1 7 3 7 3 11 6 11 6 7 9 7 9 9 14 9 14 4 17 4 17 9 20 9 20 3 21 3 21 0

Copyright ©Göktürk Üçoluk 2009

18 PROPOSITIONAL LOGIC FORMULAS

6 PROPOSITIONAL LOGIC FORMULAS

’96 HOMEWORK 2

Problem

This time we will be dealing with so called Well-Formed Propositional Logic Formulas.
From now on we will abbreviate it by “WFPLF”. A WFPLF is defined as follows:

• Lowercase letters like a,b,c ,. . . are among the constituents of WFPLFs. These let-
ters, individually, are counted as WFPLF too.

• Except the individual lowercase letters, a WFPLF can only contain the characters
‘(’, ‘) ’, ‘- ’, ‘&’, ‘| ’, ‘>’, ‘=’ provided they are used properly.

• If 2 and△ are two WFPLF then so are

- 2 (negation)
(2&△) (conjunction)
(2| △) (disjunction)
(2>△) (implication)
(2=△) (equivalence)

An instance of a WFPLF is defined to be a state where all letters (variables) used
in that formula have a value. The letter can admit the values T and F, semanticly
standing for Truthness and Falsity. The values associated with the compound
WFPLF formulas that involve the operators ‘- ’, ‘&’, ‘| ’, ‘>’, ‘=’ are defined by the
so called Truth tables (the table where all instances are covered).

2 △ - 2 (2&△) (2| △) (2>△) (2=△)
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

A program that you will write will take any WFPLF from the standard input and pro-
duce the truth table.

Copyright ©Göktürk Üçoluk 2009

PROPOSITIONAL LOGIC FORMULAS 19

Specifications

• The length of the formulas are not restricted. That means you shall not make any
restrictive assumption about a maximal length. Of course there will be natural
restrictions imposed by the compiler and hardware (like pointer size, integer size,
memory size, etc.). But you shall not impose additional restrictions.

• Though the alphabet is limited to the English lowercase characters it is possible to
have formulas in which a letter occurs at different positions.

• All blanks and end-of-lines are to be neglected.

• Parenthesis are not optional nor neutral. That means closing a WFPLF in an paren-
thesis is forbidden; negation does not have a parenthesis of its argument (doing
so is wrong).

• Since, at the moment you receive this worksheet the struct and union declara-
tions are not introduced, don’t build tree structures and do not use struct/union
types in your program.

• You will keep the formula as a string, and for each instance reevaluate it. Do not
modify the string from instance to instance.

• Make use of recursion in your evaluator.

• Your first line of your output shall contain the used characters in the lexicograph-
ical order (i.e. form a to z), separated by exactly one blank. And the upper case
letter R as the last character in the line (which stands for ‘result’). Do not use any
other character than R.

The following lines will contain the truth values represented by the letters T and
F (Do NOT use anything else like, t ,f , True , TRUE, 1, 0, etc.)

You are expected to start with the all variables T case as the first line of the truth
table and then continue by changing the right-most fastest and the left-most slow-
est.

• You can assume that all tests and runs are error-free and complies with the above
given syntax. Therefore do not perform any error check on the input.

• Hints: You may think of using the functions realloc() , getchar() , islower() ,
isspace() .

Copyright ©Göktürk Üçoluk 2009

20 PROPOSITIONAL LOGIC FORMULAS

Example

-(-(a& k) > (-((a|-k)
| c)| d))

is a possible input. The expected output is:

a c d k R
T T T T F
T T T F F
T T F T F
T T F F T
T F T T F
T F T F F
T F F T F
T F F F T
F T T T F
F T T F F
F T F T T
F T F F T
F F T T F
F F T F F
F F F T F
F F F F T

Copyright ©Göktürk Üçoluk 2009

DRAWING NARY TREES 21

7 DRAWING NARY TREES ’96 HOMEWORK 3

Introduction

A tree is a nonempty collection of vertices and edges that satisfies certain, requirements.
A vertex is a simple object (also referred to as a node) that can have a name and can carry
other associated information; an edge is a connection between two vertices. A path in
a tree is a list of distinct vertices in which successive vertices are connected by edges in
the tree. One node in the tree is designated as the root — the defining property of a tree
is that there is exactly one path between the root and each of the other nodes in the tree.
If there is more than one path between the root and some node, or if there is no path
between the root and some node, then what we have is a graph, not a tree.

Though the definition implies no “direction” on the edges, we normally think of the
edges as all pointing away from the root or towards the root depending upon the appli-
cation. We usually draw trees with the root at the top (even though this seems unnatural
at first), and we speak of node y as being below node x (and x as above y) if x is on the
path from y to the root (that is, if y is below x as drawn on the page and is connected
to x by a path that does not pass through the root). Each node (except the root) has
exactly one node above it which is called its parent; the nodes directly below a node are
called its children. We sometimes carry the analogy to family trees further and refer to
the “grandparent” or the “sibling” of a node. Nodes with no children are sometimes
called leaves, or terminal nodes. To correspond to the latter usage, nodes with at least
one child are sometimes called nonterminal nodes. Terminal nodes are often different
from nonterminal nodes: for example, they may have no name or associated informa-
tion. Especially in such situations, we refer to nonterminal nodes as internal nodes and
terminal nodes as external nodes. Any node is the root of a subtree consisting of it and
the nodes below it.

Sometimes the way in which the children of each node are ordered is significant,
sometimes it is not. An ordered tree is one in which the order of the children at every
node is specified. Of course, the children are placed in some order when we draw a
tree, and clearly there are many different ways to draw trees that are not ordered. As
we will see below, this becomes significant when we consider representing trees in a
computer, since there is much less flexibility in how to represent ordered trees. It is
normally obvious from the application which type of tree is called for.

The nodes in a tree divide themselves into levels: the level of a node is the number
of nodes on the path from it to the root (not including itself). The height of a tree is the
maximum level among all nodes in the tree (or the maximum distance to the root from
any node). The path length of a tree is the sum of the levels of all the nodes in the tree
(or the sum of the lengths of the paths from each node to the root). If internal nodes are
distinguished from external nodes, we speak of internal path length and external path
length.

Trees are intimately connected with recursion. In fact, perhaps the simplest way to
define trees is recursively, as follows:

Copyright ©Göktürk Üçoluk 2009

22 DRAWING NARY TREES

“a tree is either a single node or a root node connected to a set of trees”.

Problem

We will be dealing with ordered trees in which the information is stored in the external
nodes. For our problem the following specification holds:

• The root is not an external node.

• At any internal node the count of branching is in the range [2..30].

• Each external node holds an information which is an alphanumeric string with
length in the range [2..20]

The input representation of a tree is a one dimensional expression (a string). In this
expression the alphanumeric strings are represented as themself; children of the same
parent are grouped into a pair of parenthesis. Here follows an example, consider a
subject tree:

rasin chestnutcachou margarine milk

flour bakingpowder eggyellow suger

eggwhite salt

the input representation that corresponds to the tree above is

((cachou margarine milk) (((flour bakingpowder) (eggyellow sugar)) (egg-
white salt)) (rasin chestnut))

The program that you will write shall draw a tree given in the above representation.
The expected appearance is the same of the drawing on the previous page.

Restrictions and How-to-Do’s

• The input will be consumed by getchar() calls. No storing of the input string
as a whole (for a later processing purpose) is allowed.

• The input might be scattered over several lines and may contain white-spaces. All
consecutive white-spaces are equivalent to a single blank.

• You are expected to construct a data structure by means of dynamic memory al-
location and pointer usage. You shall think of a data structure where it should
be possible to store either an external node or an internal one (you may think of
making use of union). The edges of the tree shall be represented by pointer links.

Copyright ©Göktürk Üçoluk 2009

DRAWING NARY TREES 23

• A parent can have at most 30 children, not more. But you are not allowed to use
this information for allocating memory which you may not use. In other words
you are not allowed to make allocation for 30 children where only 4 are present
and leave 26 children position unused.

• External nodes are represented by alphanumeric strings (eg. bakingpowder). The
maximal length for them is 20. The same rule of the previous item applies for this
case as well. You shall not allocate more space for them then actually needed.

• All the structure member field accesses shall be performed by making use of
macros (in other words you are not allowed to explicitly use the ‘. ’ (dot) oper-
ator in any function).

• You shall construct the structure on-the-fly, that means while you are reading the
input you shall be constructing the internal data structure.

• In the drawing, equal level nodes shall be drawn at the same depth. The vertical
distance between two consecutive levels is 30 units.

• Horizontally consecutive external nodes (which are represented by the alphanu-
merics) shall be equally spaced. (imagine that all the leaves fall from the tree
exactly vertical onto a horizontal line and you have the alphanumeric aligned on
the same line, now the spaces between two consecutive alphanumeric strings shall
be the same). So, for example, the horizontal distance between the milk and flour
shall be the same as of the distance between rasin and chestnut (by distance we
mean the distance from end to start).

• Any parent node shall be horizontally centered between its leftmost child and
rightmost child. If such a child is an external node then the reference point of that
child used for the centering is the mid of the alphanumeric string of that external
node.

• You shall mark the internal node by a filled circle of a radius of 2 units. A practical
way to do this is to draw two co-centric circles one of radius 1 the other of radius
2.

• You are expected to use recursion in parsing and the drawing. Do not try to use (or
even think of) other methods.

• After the construction of the internal data structure you are allowed to run through
it at most 2 times.

• You can assume that the input is error free. That means all parenthesis opened are
closed; characters in the input stream are either white-spaces, alphanumerics or
opening or closing parenthesis (nothing else).

• You are provided with some facilities for drawing in an X-windows environment,
these are:

Copyright ©Göktürk Üçoluk 2009

24 DRAWING NARY TREES

Some header files: Your top lines of your hw3.c file shall contain

#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/cms.h>
#include <xview/xv_xrect.h>
#include "/shared/courses/ceng-241/hw3.h";

An X-window: You will have a graphical x-window poping up when you run
your program. you don’t have to do any additional work to create the win-
dow. The window size is fixed to be 1200 units in horizontal, 800 units in ver-
tical direction. The origin is at the top-left corner of the window. From now
on we will refer to the distance of a point in the window, measured in the hor-
izontal left-to-right direction and starting from the origin as the x-coordinate;
and similarly, in the vertical top-to-bottom direction (starting form the origin)
as the y-coordinate.

Functions for drawing: Through the included hw3.h file you have (automati-
cally) three functions available:

DrawLine(int x1,int y1,int x2,int y2) As the name suggests, this
draws a straight line from the coordinates (x1 , y1) to (x2 , y2)

DrawCircle(int x,int y,int r) Draws a circle which has its center
at (x , y) and is of a radius r units.

DrawString(int x,int y,char *text) At (x , y) places the string which
is pointed by text. The start of the string is at the given coordinate. Each
character position is about 6 units wide.

A main function: The actual main() function is defined in the header file hw3.h
. At the start of this main() function some initializations are performed (you
don’t have to bother what these are). Then a function which is named as
student main() is called. Therefore in this homework

– DO NOT define a function with name main() .

– DEFINE a function with name student main() to do whatever you
would normally do in your main() function definition.

A make file: You are provided with a make file

/shared/courses/ceng-241/Makefile

You shall copy this file to your work directory (do not rename it). Then a
simple command as

make

will perform the compilation and linking with the correct libraries of your
hw3.c file. The executable will have the name hw3 and will be placed in
your working directory. (Note that the make file does not take an argument like
hw3.c).

• Your program, as usual, shall read form standard input.

Copyright ©Göktürk Üçoluk 2009

DRAWING NARY TREES 25

• The root shall be positioned allways at (600, 30) (see below for bonus).

Bonus

Some trees, very naturally, may extend beyond the left or right border. Provided that
you comply with the specifications above, nothing is wrong with this. Your X environ-
ment is so that a clipping occurs and those portions of the tree will not be seen. You
may think of adjusting this if the tree is not that much grown to the other direction by
displacing the root. If you solve this problem and (only for those problems) find a better
position for the root you get a %20 bonus. This bonus is absolute, that means, if you got
a 100 of the compulsory part and also received a 20 points, the hw3 contribution to the
overall course grade will be calculated using 120 and will naturally be higher then the
contribution of a 100.

Copyright ©Göktürk Üçoluk 2009

26 MINIMAL SPANNING TREE

8 MINIMAL SPANNING TREE ’96 HOMEWORK 4

Problem

Cities are connected to other cities through roads of various lengths. Roads are used in
either direction. As you would expect, a frequently occurring case is that between two
cities there might not be a road. If that is the case the way to travel form one city to the
other will be via other cities. The input is guaranteed to be such that for any two cities
there exists at least one path that connects them. Also it could be the case that there
exists more than one such paths. It could also happen that between two cities there is a
road (but not more than one) and other paths (via other cities) that connect them.

The state is in a heavy economical crises. So the government decides to cut down the
road maintenance expenses. This means that some unmaintained roads may deteriorate
and cease function. But some roads will be kept maintained such that the connectivity
remains. That means any city shall be reachable from any other city. Of course some
clever goverment official immediately discovers that there are more then one alterna-
tives in choosing the roads that will be kept maintained and the best choice is the one
that minimises the expense. The maintenence expense for a road is linearly proportional
to its length. It is unnecessary to mention that the increase in some of the distances to
reach a city from another one is not to the slightest concern of the government (it is the
inviduals who will suffer and not the government).

Your duty (if you accept of course) is to find the roads which will kept maintained.
Below you see an example of a road map (look at it: it will destroy itself in 5 secs).

25

Burronymede

Bonampak

Finiguerra

Castrovalva

Tumbolia

Verbum

Xantu

Djinn

MauYaxchilan

120

90

55 20
Glazunkia

30 50

75

30
30

30
45

40

20

180

Mestre

With this map to hand the answer of the question:

Which roads shall be kept maintained so that the maintenance cost is minimum and
still all cities are connected?

Copyright ©Göktürk Üçoluk 2009

MINIMAL SPANNING TREE 27

Here is a solution:

Burronymede

Bonampak

Finiguerra

Castrovalva

Tumbolia

Verbum

Xantu

Djinn

MauYaxchilan

120

55 20
Glazunkia

30 50
30

30
45

40

20
Mestre

25

Total maintained road length: 465

Specifications

• Your program shall read the map information from a file which name will be pro-
vided as the first comment line argument to the program. No existence check is
required. This map information which will be provided in the below described
format.

• The file constitutes of lines each of which corresponds to a road between two cities.
There is no predefined order of the lines, in the file. A line is made of 4 entries
which are separated by at least one blank. The first is the national road number
(you will use it in your output) this number can be represented as a long int .
The second and the third entry are the names of the cities which are connected by
a road. The fourth (last) entry in the line is a natural number corresponding to the
length of that road (can be represented by an int). A name of a city is a single
word which is made of (at most 30) letters (Hence New Mexico is not a valid city
name in this homework). The naming is case sensitive, upper cases are distinct from
lower cases.

Copyright ©Göktürk Üçoluk 2009

28 MINIMAL SPANNING TREE

Here is a file which would be one of the descriptions of the above given map.

101 Burronymede Tumbolia 120
201 Yaxchilan Burronymede 25
143 Yaxchilan Glazunkia 90
546 Yaxchilan Bonampak 55
12 Bonampak Finiguerra 20
65 Bonampak Glazunkia 20
34 Finiguerra Djinn 180
33 Castrovalva Mestre 75
4232 Castrovalva Verbub 50
67 Mestre Xantu 30
102 Mestre Mau 30
1343 Mau Xantu 30
15 Mestre Djinn 45
79 Djinn Verbum 40
90 Glazunkia Castrovalva 30

The file (as shown) will not include any information of how many lines it includes.

• The output will start with a single line that will contain the total length of roads
that have to be maintained. Each of the following lines will contain a single na-
tional road number of a road that shall be maintained (one number per line). This
list shall be sorted in ascending order.

For the above given solution example the expected output is:

465
12
15
65
79
90
101
102
201
546
1343
4232

If there is more then one alternative for the minimal expense then you are free to
choose any scheme.

• You can make the assumption that the file is error-free, so there is
no need to perform error checks.

• You are forced to use dynamic memory allocation for any array or structure in
your program. So, the use of static or auto array declarations is forbidden.

Copyright ©Göktürk Üçoluk 2009

MINIMAL SPANNING TREE 29

Evaluation

• A program submitted after the due date/time will be graded zero.

• A program that uses compile-time defined arrays will be graded zero.

• A working program (in the terms defined above) will receive 40 points, otherwise
it will be graded zero. Here the term “working” means to run at least the same
speed of a program which will be made execute-accessible to you. You will also
be provided with some ‘large-sized’ test data. (Check tin for further announcements)

• Your program will receive an additive point P depending on its execution time,
calculated as follows:

P = 60× T imeLongest − T imeY our program

T imeLongest − T imeShortest

Here T imeShortest is the execution time of the best performing submission. T imeLongest

is the execution time of the worst but ‘working’ (in the above defined terms) sub-
mission.

• All submissions will be compiled and run under strictly equal conditions.

Copyright ©Göktürk Üçoluk 2009

30 TURKISH HYPHENATION

9 TURKISH HYPHENATION ’97 HOMEWORK 1

Problem

To start the series of Ceng. 241 homeworks in a gentle manner it has been decided to
have a simple one for the first.

The problem is to hyphenate any Turkish word. So here are some examples of what
is expected:

Input Output
ak ak
kal kal
kalas ka-las
fikriye fik-ri-ye
saat sa-at
kontrbas kontr-bas
turkce turk-ce
belirtim be-lir-tim
belirtmek be-lirt-mek
belirttirmek be-lirt-tir-mek
avusturalyalilastiramadiklarimizdanmiymis a-vus-tu-r al-ya-li-las-ti-ra-ma-dik-la-ri-miz-dan-miy-mis

You don’t have to worry about the Turkish special characters, their presence will not
change the hyphenation algorithm, since the whole algorithm is based on the order of
vowel/consonant properties of the constituent letters of the Turkish word.

Note: The hyphenation algorithm is extremely simple and the coding of it does not
exceed 10 lines of C code.

Specifications

Your program will read words each placed on a single line. A Turkish word will not
exceed 50 characters. The input is white-space (blanks,tabs) free. After the last word
there shall be no expectation of a special character/marker. The program shall termi-
nate when the EOF character (control-D) is entered. After each line of input the program
shall output on a new line the hyphenated word (by placing ‘- ’ characters where it is
appropriate) and continue with the next line of input. Do not use any gizmos in your
program. That means do not print any header like:
Welcome to my hw1 program
or trailers to the input like:
Enter word:
nor print trailers for the output:
Hyphenation result:

Copyright ©Göktürk Üçoluk 2009

TURKISH HYPHENATION 31

or some similar stuff. Your program will be tested automatically (by another program).
If you print a single line/space/character more then expected that program may mal-
function.

Copyright ©Göktürk Üçoluk 2009

32 SEXPR TOKENIZER

10 SEXPR TOKENIZER ’95 HOMEWORK 1

Introduction

As you are familiar from your Ceng 111 course, Scheme (more generally LISP) was
operating in a domain that we call sexprs. An sexpr is one of the followings:

• Number

• Atom

• String

• List1.

Here we give the formal definition of the syntax for each of these sexpr in the (BNF)
notation.

Number

There are two kinds of numbers: integers and floating points. Though the limitation did
not exist in Scheme, for sake of simplicity we restrict the sizes so that the integers can
‘internally’ be represented by long int (in the C language) and the floating points by
double . The BNF definition of ‘number’ is as follows:

〈number〉 −→ 〈sign〉 〈unsigned〉
〈unsigned〉 −→ 〈unsigned float〉 | 〈unsigned integer〉

〈unsigned float〉 −→ 〈unsigned integer〉 . 〈exponent〉
| 〈unsigned integer〉 . 〈unsigned integer〉 〈exponent〉
. 〈unsigned integer〉 〈exponent〉

〈exponent〉 −→ 〈letter-E〉 〈sign〉 〈unsigned integer〉 | ε
〈unsigned integer〉 −→ 〈digit〉 〈more digits〉
〈 more digits〉 −→ 〈digit〉 〈more digits〉 | ε
〈letter-E〉 −→ E | e
〈sign〉 −→ + | - | ε
〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

These are numbers: 27 4 -4 +4 3.14 -3.14 +4 0.25 10.25 00.50 .25 25.
25.0 -0.25 -.25 -.0 .0 0. -0. +0 +0. -12.45e+3 +012.450e-023
-.05E01 -.05E0 -0.E-0

These are not numbers: . -. x.y e-3 1-3 1.-3. 1.25e0.5 (12) "1245" "-3.14"

1Actually, speaking in strict LISP terms, this item is a more general one, namely the Dotted pair. But,
for simplicity, we refrain from this, and replace it by a linear structure, the list

Copyright ©Göktürk Üçoluk 2009

SEXPR TOKENIZER 33

Atom

〈atom〉 −→ 〈non digit character〉 〈more characters〉
〈more characters〉 −→ 〈atomic character〉 〈more characters〉 | ε
〈atomic character〉 −→ 〈any Ascii printable except ") (] [. 〉
〈non digit character〉 −→ 〈any atomic character that is not a digit〉

These are atoms: x x1 xyz123qrt e-2 - -x +- /12 AxY x2/7 x+4 * y/5

These are not atoms: 12 x. . -. a[3] (a) x.y mid mid "x1" "a[3]" "2"

No atom will have more than 50 characters.

String

〈string〉 −→ " 〈string characters〉 "
〈string characters〉 −→ 〈a string character〉 〈string characters〉 | ε
〈a string character〉 −→ 〈any Ascii printable except " 〉

As you might have realized this is an over simplified definition of string (compared to
the string convention of the C language) since it does not provide an escape sequence.
A string will have at most 300 characters.

These are strings: "x1" "a[3]" " " "3;;’,./& *)) NY[*]N" "-3.14" ""
"x.y"

List

Though in this homework you will not recognize lists, for completeness we state how
they are defined. The following definition will be useful in the next homework.

〈list〉 −→ (〈white spaces〉 〈sexpr sequence〉)
〈sexpr sequence〉 −→ 〈sexpr〉 〈white spaces〉 〈sexpr sequence〉 | ε
〈white spaces〉 −→ 〈white space〉 〈white spaces〉 | ε
〈white space〉 −→ | 〈end of line〉

More than one adjacent white spaces are equivalent to a single white space. A white
space is only meaningful if its ommitance results in an ambiguity.

The closure: sexpr

Here we give the definition of the term sexpr.

〈sexpr〉 −→ 〈number〉 | 〈atom〉 | 〈string〉 | 〈list〉

Here is a ‘huge’ example of an sexpr:

Copyright ©Göktürk Üçoluk 2009

34 SEXPR TOKENIZER

((family (father (Ahmet OZOKLAV)) (mother (Sukriye BATMAZ))
(children 2 ((munevver 11.5) (mubeccel 3.5)))

(address "Ortaklar Cad. Birlik apt. no: 10/6 Murvetiye/Ker talan")
(income B-4 1.2e8)

))

Problem

In this homework you will be writing a tokenizer for sexpr’s. A tokenizer is a program
that takes an element of a language (in our case an sexpr) and returns it basic building
blocks in left to right order. For our case the building blocks are:

• integer numbers

• floating point numbers

• atoms

• strings

• left parenthesis

• right parenthesis

Copyright ©Göktürk Üçoluk 2009

SEXPR TOKENIZER 35

For the above given sexpr example the tokenizer would recognize the input as

TOKEN KIND

(left parenthesis
(left parenthesis
family atom
(left parenthesis
father atom
(left parenthesis
Ahmet atom
OZOKLAV atom
) right parenthesis
) right parenthesis
(left parenthesis
mother atom
(left parenthesis
Sukriye atom
BATMAZ atom
) right parenthesis
) right parenthesis
(left parenthesis
children atom
2 integer number
(left parenthesis
(left parenthesis
munevver atom
11.5 floating point number
) right parenthesis
(left parenthesis
mubeccel atom
3.5 floating point number
) right parenthesis
) right parenthesis
) right parenthesis
(left parenthesis
address atom
"Ortaklar Cad. Birlik apt. no: 10/6 Murvetiye/Kertalan" string
) right parenthesis
(left parenthesis
income atom
B-4 atom
1.2e8 floating point number
) right parenthesis
) right parenthesis
) right parenthesis

Copyright ©Göktürk Üçoluk 2009

36 SEXPR TOKENIZER

Specification

Your program will take sexpr(s) from the input and until End-of-file is detected will
output for each token a triple of information:

[Token] [Token kind] [Process result]

The Process is defined as follows:

If token is an integer number : Add 1 (one) to its value.

If token is a floating point number : Halve its value.

If token is an atom : Convert all lower cases to upper cases; all upper cases to lower
cases; leave all others unchanged.

If token is a string : Count the spaces in the string.

If the token is a parenthesis : Don’t do anything.

So the first 10 lines of the output of your program for the above given example as input
would be:

[(] [leftp] [(]
[(] [leftp] [(]
[family] [atom] [FAMILY]
[(] [leftp] [(]
[father] [atom] [FATHER]
[(] [leftp] [(]
[Ahmet] [atom] [aHMET]
[OZOKLAV] [atom] [ozoklav]
[)] [rightp] [)]
[)] [rightp] [)]

Lines 20-24 of the output will be:

[2] [integer] [3]
[(] [leftp] [(]
[(] [leftp] [(]
[munevver] [atom] [MUNEVVER]
[11.5] [float] [5.750000]

The only token which is a string will produce an output line:

["Ortaklar Cad. Birlik apt. no: 10/6 Murvetiye/Kertalan"] [string] [6]

Copyright ©Göktürk Üçoluk 2009

SEXPR TOKENIZER 37

• Do not take any special action when you detect End-of-file, just quit.

• Do not attempt to store all the input. The idea is to read in a line from the input,
find the tokens, output them, continue with the next line.

• As it is also clear from the BNF description, it is not possible to break numbers,
atoms, strings over the end of a line. That means a number, atom or string will
resign in a single line in whole. This is not so for a list. A list may have its elements
scattered over multiple lines.

• You will be using your tokenizer in the next homework. Therefore write it in
a modular style (preferably as a function which at every call produces the next
token in line and stores it in some global variables along with a returned type
information (a small integer for example)).

• The input will not be erroneous. So, you do not have to test for errors.

• Printable Ascii characters are those which have theirascii codes in the range [32-
127] (decimal).

• Throughout definitions, the character stands for the Ascii 32 character (space).
Also note that, unless it is explicitly stated by the definition, the use of spaces are
not allowed. (e.g. if you insert a space into an atom it is no more that atom).

Copyright ©Göktürk Üçoluk 2009

38 SEXPR PARSER

11 SEXPR PARSER ’97 HOMEWORK 3

Introduction

You have written in your previous homework a tokenizer for the primitive data types
of the sexpr domain. This time you will be writing a parser for the sexpr domain (which
will also include the list type. The purpose is to read in a sexpr and convert it into an
internal representation.

Problem

The internal representation will make use of the C concept of unions. Most generally
an sexpr will be represented internally by a pointer to a struct of two fields, namely
a tag field and another field which is of union type. The tag field shall be holding the
kind of the sexpr (ie. atom, integer, float, string, list). As it was explained in the lecture,
you are totally free in choosing the tag values. Just as an example, in this sheet we
will be using 1:atom, 2:integer, 3:float, 4:string, 5:list. It is strongly advisable that you
define these through #define macros. This will make your code much more readable.
The other field of the union will be holding one of the ‘internal’ representation of the
possible sexpr types.

The union shall be combining the following ‘internal representation’ alternatives.

atom : A struct consisting of 2 fields which will store:

1. a pointer to the name string of the atom,

2. a pointer to any other sexpr (a pointer to the union!) which is initialized to
NULL.

We will name these fields as the printname and the value of the atom, respectively.

There is a special treatment of atoms. Namely, atoms are stored uniquely. That
means in a run of your program any atom must be checked for being present at
that moment. If there was an atom created with the same name already, you must
use the reference (the pointer) to that created. We would strongly advise that you
device a dynamic array (growable) in which you store the pointers to the atoms.
This will enable you to perform the existence search easily over the atom space.
one (and not create a new atom).

integer : A long int

float : A double

string : A pointer to the content of the string (the double-quotes will not be stored).

list : If the list has n elements then an array of n + 1 elements each of which holds
a pointer to one of the sexpr elements of the list. (left → right order shall be

Copyright ©Göktürk Üçoluk 2009

SEXPR PARSER 39

preserved as smaller index value → greater index value). The last element of the
array will be stored with NULLserving as a terminator.

Copyright ©Göktürk Üçoluk 2009

40 SEXPR PARSER

Here is an example:

(ad (yas (25 30)) (boy 1.85)
(medeni_hal es veletler)
(ev (adres "36.lojman no:8 ODTU")

(hane_uyeleri ad es kaynana veletler)
))

The next page contains a 2-dim schematic of the internal representation for this sexpr
input. All what you see in the schematic is in C terms. Pointers are represented with
arrows. Though strings are one dimensional arrays stored with the ascii values of the
member characters and terminated by zeros to keep the scheme readable this structure
is not pictured. C strings are represented by their C language notation. Hence the quotes
are not stored and:

"veletler" means e e rltelv

The pointer indicated with P in the schema is the expected pointer value to be returned.
In the following scheme all placements in the page is random and does not imply

any order about the memory addresses.

"medeni_hal" "veletler"

"adres"

"36.lojman no:8 ODTU"

"hane_uyeleri"

"ad"

"es"

"kaynana"1.85"boy"
"yas"

"ev"

3025

4

5
1

1

5

1

5

5

1

55

1 5

2 2

1 3

1

1

5

11

P

Copyright ©Göktürk Üçoluk 2009

SEXPR PARSER 41

The program that you are going to develop is going to have three phases. In the
I. phase you will be reading a sexpr and create the internal representation. To do this
you shall write a function read sexpr() which reads any sexpr, creates the relevant
union and returns a pointer to it. Since lists are containing other sexprs it is obvious that
read sexpr() will be making use of itself (that means recursion).

The II. phase continues with the some other reading. This time successively, until
the hit of EOF, you will be reading and atom which is followed by any sexpr, (and then
another atom and another sexpr). Each sexpr read in this way will become the value
of the preceding atom (the atom that just came before that sexpr). You will store the
value into the value field of the relevant atom. It is quite possible that the atom was
not existing due to the first phase. It is also possible that some of the atoms may have
no value at the end of the second phase.

The III. phase is printing. It has a simple rule:

• integers, floats, strings are printed as they are (strings shall have their double
quotes).

• if an atom has no value assigned (i.e. still has the NULLin its value field) then print
its printname.

Otherwise print the sexpr sitting in (pointed by) its value field. (note that this can
also be another atom with some sexpr value, then that value has to be printed (I
am sure you immediately spot the recursion behind!)

• lists are going to be printed in coherence with the rules above.

The next subsection* contains for details.

Specification

Your program will read

sexprgrand

atom1 sexpr1

atom2 sexpr2
...
atomn sexprn

Of course the scattering of the input over lines is absolutely insignificant. Your tokenizer
was and (still is) insensible to End-of-Line.

sexprgrand atom1 sexpr1 atom2 sexpr2 · · · atomn sexprn

will be an equivalent input.

The output will be:

sexpr
′

grand

Where it is generated following the rule of the III. phase, described in in the previous
subsection*.

Copyright ©Göktürk Üçoluk 2009

42 SEXPR PARSER

Example:
Assume the following input is given:

(ad (yas (25 30)) (boy 1.85)
(medeni_hal es veletler)
(ev (adres "36.lojman no:8 ODTU")

(hane_uyeleri ad es kaynana veletler)))
ad vatandas
veletler ((mubeccel 5) (munevver 8))
kaynana (kayinvalide-i vatandas)
vatandas mukremin
yonetmen demet_akbag

The output is expected to be:

(mukremin (yas (25 30)) (boy 1.85)
(medeni_hal es ((mubeccel 5) (munevver 8)))
(ev (adres "36.lojman no:8 ODTU")

(hane_uyeleri mukremin es (kayinvalide-i mukremin)
((mubeccel 5) (munevver 8)))

The indentation and line breaking is solely for neatness: You are not expected to do it.

• The tokenizer will be placed in a file that you will name as exactly as tokenizer.c .
Your other source code will go into a file that you will name as hw3.c . this time
you are not submitting hw3.c only. You will pack the two files together into a
.tar file by a command

tar -cvf hw3.tar hw3.c tokenizer.c

Than you will submit hw3.tar by:

submit241 hw3.tar

Resubmission is allowed (till the last moment of the due date), the last will replace
the previous, provided you answer the interactive question positively.

• The tokenizer will be called over a single function which shall be named get token()
and returns the token kind. The token itself shall be passed through a global char
array which you will name as token . Maximal token length is 100 characters. You
are expected, naturally, to introduce extern and prototyping lines as necessary.

• Your programs will be evaluated by a test-program. But also be glass-box tested.
That means, the evaluation team by no means will modify your code but will look
into it. You will also receive/loose points on the programming style.

Copyright ©Göktürk Üçoluk 2009

SEXPR PARSER 43

• You shall make use of #define macros in reaching to the subfields of unions and
structures.

• No list will contain more then 100 elements. But this knowledge cannot be used
to make dynamic memory allocations under the ‘worst case’ assumption (of that
fixed length). But you are allowed to create temporary (auto) variables making
use of this knowledge.

• All dynamic memory allocation must be just as much as needed. That means you
cannot waste memory.

• It is only the atoms that are stored uniquely. Any other two similar sexprs (e.g. the
integers 15 and 15) will have two different internal positions in the memory.

• There will be erroneous input: Expressions which are not sexpr at all; or non-
atoms where an atom is expected. In all these error cases you will quit the pro-
gram by printing on a new line exactly the following output:

*** ERROR***

• Any unambiguous sexpr printing (where no two-blanks are used consecutively
except line starts) is ok, on your side. That means you are allowed to print the
whole result in a single line; or break it over lines; or break it overlines and insert
more than one blanks at the start of the line (like the output example above). If
you decide to scatter over lines the lines have to contain at least 30 characters,
provided that it is not the last output line This just is a restriction to prevent ‘ugly’
outputs like ‘one atom or number per line’).

• Comply fully with the input/output specifications. Do not print additional infor-
mation, prompts, etc.

• Empty lists may exist. Nothing special about them: They read and print as: ()

• You are allowed to use any ANSI-C function (the best place for a reference is the
book itself).

Copyright ©Göktürk Üçoluk 2009

44 SEXPR PARSER

Here is the scheme of the internal structure after II. phase for the example. Gray
indicates new/altered.

"adres"

"36.lojman no:8 ODTU"

"hane_uyeleri"

"es"

25

2

5

1
"medeni_hal"

1
"veletler"

5 5

5 5

1.85"boy"
"yas"

"ev"

30

4

5
1

1

5

1

5

5

1

5

1 5

2

1 3

1

1

5

P

1 1
"vatandas""mukremin"

"ad"

1
2

1
"munevver"

8

2"mubeccel"
5

1
"kayinvalide-i"

"kaynana"

1 1
"demet_akbag""yonetmen"

Copyright ©Göktürk Üçoluk 2009

SEXPR UNIFIER 45

12 SEXPR UNIFIER ’97 HOMEWORK 4

Introduction

By completing your 3rd homework you are now able to read an sexpr, convert it to
an internal structure, perform manipulations on it and furthermore print it. In this
homework we will make use of this implementation and construct upon it a unifier.

The question of unification is to take two sexprs which may contain some atoms
which we call variables and then search for sub sexprs of the sexprs so that when they
are substituted for the variables both of the sexprs become identical.

Here is an example, consider the following two sexprs in which x , y , z , u are the
variable atoms.

sexpr1:(p (f x) y (g y x))
sexpr2:(p u (k u) (g z (h w)))

Now if we investigate carefully both sexprs we discover that if we

substitute (h w) for x
substitute (k (f (h w))) for z
substitute (k (f (h w))) for y
substitute (f (h w)) for u

both sexpr1 and sexpr2 turns into:

(p (f (h w)) (k (f (h w))) (g (k (f (h w))) (h w)))

For this particular example the result would exactly be the same if w would also be a
variable atom (ie. it is possible that in the resulting sexpr variable atoms exist too).

We define a substitution S as the a set of pairs si/vari

S = {s1/var1, s2/var2, . . . , sn/varn}

with the meaning that, if S is applied to an sexpr E:

∀i ssubstitute si for vari in E

By definition, the substituting expression si cannot contain the substituted variable vari.
If we apply the substitution S to an sexpr E we will dentotationaly write:

S[E]

So for the above example we would have written:

S = {(h w) /x , (k (f (h w))) /z , (k (f (h w))) /y , (f (h w)) /u}

Considering the above definition for sexpr1 and sexpr2 we can write

S[sexpr1] = S[sexpr2] = (p (f (h w)) (k (f (h w))) (g (k (f (h w))) (h w)))

Copyright ©Göktürk Üçoluk 2009

46 SEXPR UNIFIER

The composition of two substitutions is another substitution. If S andR are two substi-
tutions then the composition S ◦ R is defined as:

(S ◦ R)[E] = S[R[E]]

Assuming

S = {s1/v1, s2/v2, . . . , sn/vn}
R = {r1/u1, r2/u2, . . . , rm/vm}

We obtain S ◦ R by

S ◦ R = {S[ri]/ui | i = 1 . . .m} ∪ {si/vi | vi 6= uj, i = 1 . . . n, j = 1 . . .m}

Verbally, the composition of two substitutions S andR is denoted by S◦R, which is that
substitution obtained by applying S to the substituting sexprs ofR and then adding any
si/vi pair of S having variables vi not occurring among the variables of R.

For your benefit, we provide you with the algorithmic definition of the function
unify() which takes two sexpr to be unified and as a result returns either FAIL or a set
which is the substitution required for the unification:

unify(E1, E2)← {
if either E1 or E2 is not a list then
{ interchange E1 and so that E1 is an atom.

if E1 = E2 then return (∅).
if E1 is a variable then

if E1 occurs in E2 then return (FAIL)
else return ({E2/E1})

if E2 is a variable then return ({E1/E2})
return (FAIL) }

F1 ← First element of E1; T1 ← Rest of E1

F2 ← First element of E2; T2 ← Rest of E2

Z1 ← unify(F1, F2)
if Z1 = FAIL then return (FAIL)
G1 ← Z1[T1]
G2 ← Z2[T2]
Z2 ← unify(G1, G2)
if Z2 = FAIL then return (FAIL)
return (Z2 ◦ Z1)
}

Copyright ©Göktürk Üçoluk 2009

SEXPR UNIFIER 47

Problem

The statement of the problem is this time very simple. Your program will read 2 sexprs
from the standart input and produce a single sexpr as output (do not echo the input on
the output). That output sexpr will be either the atom

FAIL

or a list of sublists:
((sub sexpr1 var atom1) (sub sexpr2 var atom2) (sub sexprn var atomn))
with the obvious meaning of being the substitution discovered by the unification.

In the input all atoms that start with a capital letter are variables.
If no substitution is required (ie. two identical sexpr were given as input) the output

will be an empty list.

Specification

• all specifications about sexprs syntax and semantics, count of elements, error ac-
tions of the previous homework continue to hold.

Copyright ©Göktürk Üçoluk 2009

48 MARKETING POLICY

13 MARKETING POLICY ’97 HOMEWORK 5

Problem

This time the definition of the problem is short and simple. You are responsible of the
marketing policy of a gross store.

Each day you will be putting an item from the stock on sale. For simplicity each day
there will be only one item on sale.

Furthermore what ever you put on sale you are able to sell that day. The items on
stock are numbered starting with 1. Each item contains two informations on its label :

its expiration day d from now on. This is an integer 0 < d < 5000. After d days you are
not allowed to sell the item. It has also an effect on the selling price (see below).

its starting price p. This is another integer p < 1000. If you put the item today on sale
you will get p money units. If you sell it tomorrow then you get p/d less then the

price p. If you sell it the nth day (today is counted as n = 0) you get p−n/d. When
n = d you are not allowed to sell it. (division is floating point division).

You are expected to find out a sequence of item sells so that you get maximal money. You
are allowed, of course, to have some items deteriorate in stock (i.e. exceed the expiration
date and still have it in stock).

Specification

• Input will be done from a file which will be named as day-price.txt . It con-

sists of lines of similar structure. Any ith line of this file is of structure
dayi pricei

and is the information about the ith item.

• The output is a sequence of integers, each printed on a distinct line of the output
file sell-order.txt . the first line will contain a floating point number (you will
decide to use double or float) which is the money you gain with your proposed
selling schedule. The following lines will contain the selling schedule. That means
the first line after the floating point number is the number of the item which is to
be sold today. The second line is the item for tomorrow, and so on.

• There may be at most 10000 items. But it is possible to have less.

• There is no restriction that says the d figure or the p figure cannot repeat.

• Your program will be run on the Sun machines which you have in the lab available.
The run time will be 1 minute. Then it will be terminated. We advise to use the
‘time bomb’ concept which is introduced on the WEB page. Though we reserve

Copyright ©Göktürk Üçoluk 2009

MARKETING POLICY 49

the right to run your program on faster machines, the execution time will always
be restricted to 1 minute. If you are planning to overwrite your file from time to
time with better solution do this by reopening the file, writing and then closing it.

Evaluation

• A program submitted after the due date/time will be graded zero.

• A working program (in the terms defined above) will receive 40 points, otherwise
it will be graded zero. Here the term “working” means to produce a valid and cor-
rect output file. (The money calculation mast be correct, there shall be no logical
error in the sellings (no repeated sells, no non existing item sell, etc.)

• Your program will receive an additive point P depending on its quality of solu-
tion, calculated as follows:

P = 60× MoneyY our program −MoneyLowest

MoneyHighest −MoneyLowest

Here MoneyHighest is the money earned in the the best performing submission.
MoneyLowest is the money earned in the worst but ‘working’ (in the above defined
terms) submission.

• All submissions will be compiled and run under strictly equal conditions.

Copyright ©Göktürk Üçoluk 2009

50 POLYGON CLIPPING

14 POLYGON CLIPPING ’98 HOMEWORK 1

Problem

Welcome to the series of Ceng. 140 homeworks. Here is the first one to go!
This is a clipping problem. You will be given a polygon which:

• can be convex or concave (no restriction in this sense),

• has its edges parallel to one of the Cartesian coordinate axes.

Here are a couple of such polygons:

In addition to the given polygon you will be given the size and the position of a rectan-
gular window. The problem is to find how many distinct parts of the polygon falls into
the window. For example consider the following polygon and window:

I II

III

IV

As seen there are exactly four distinct parts of the polygon when viewed through the
window (they are marked as I,II,III,IV in the figure. So the solution of the problem
displayed in the figure is 4. You are expected to produce this number.

Copyright ©Göktürk Üçoluk 2009

POLYGON CLIPPING 51

Specifications

• The coordinate system is the Cartesian coordinate system where the apsissa is
called X and the ordinate is called Y . Below, we will refer to smaller/greater X as
lower/upper; smaller/greater Y as left/right;

• All coordinates are integers in the range [0, 20000]

• Your program will read from standard input.

• The first line of the input consists of four integers namely the coordinates of the
window lower-left and upper-right corners. In the following order:
Xlowerleft Ylowerleft Xupperright Yupperright

• In each of the following line there will be the coordinate of the a corner of the
polygon:
Xcorner Ycorner

Maximal count of corner is 1000 (but there can be less). The coordinates of neigh-
boring corners will be on successive lines. The corner defined in the first of such
lines (the second line of the input) is neighbor to the corner defined in the last line.

• Your output consists of a single integer, namely the count of distinct parts (as
described in the PROBLEM part, above).
You shall not print anything more!, for example DO NOT PRINT lines as
The solution is: 4 or There are 4 distinct parts.
Such programs will receive 0 (zero) grade.

Copyright ©Göktürk Üçoluk 2009

52 ANOTHER NONSENSE STACK MACHINE

15 ANOTHER NONSENSE STACK MACHINE

’98 HOMEWORK 2

Background Information

See Background Information of ’95 HOMEWORK 2

Problem

In this homework you are going to implement a stack and using it, following some rules
given below, you will be pushing and popping elements from this stack. The whole task
is to output the number that is at the top of the stack after that procedure is carried out.

1 You will be reading an integer number in the range [0,1000]. If there is no more
input (EOF case: (control-D) is inputted) you print the top of the stack and stop.

2 Any number such arrived is pushed onto the stack.

3 The top of the stack is examined:

• If it is a square number (i.e. is a square of another integer) which is> 1 then

it is replaced by its square root. The process continues from step 3 . (See
Restrictions)

• If it is not one of the followings

– 0

– 1

– A prime number

nothing is done, with step 1 the process continues.

• Otherwise, a (modulo 5) operation on the number is performed (lets call the
result m). The prime number is discarded from stack (popped), then the fol-
lowing two numbers that are on the stack are popped (lets call these numbers
p1 and p2).

– If m is 0 the result of |p2
1 − p2

2| is pushed onto the stack.

– If m is 1 the result of p1 × p2 is pushed onto the stack.

– If m is 2 the result of p1 + p2 is pushed onto the stack.

– If m is 3 the result of |p1 − p2| is pushed onto the stack.

– If m is 4 the result of gcd(p1, p2) is pushed onto the stack.

Process continues from step 3 . (See Restrictions)

Copyright ©Göktürk Üçoluk 2009

ANOTHER NONSENSE STACK MACHINE 53

Restrictions

• gcd has to be implemented as a recursive function that implements the Euclid
greatest common divisor algorithm. Below you see an example where gcd(192, 72)
is derived. (It is very difficult to understand why this simple and wonderfull
algorithm is not thought at High school!).
Note: After you have understood it do not forget to put it in a recursive form!

��
��

��
��

72

48

�
�

�
192 ��

��
��
��

��
�� ��

��
��
��

��
��

-

�
�
�
�
�
��

�
?

-

�
�
�
�
�
��

�
?

72 48 48 24

024

Remainder has become zero.

Therefore GCD is: 24

�

�
�

�
�	

�
�	

2 1 2

• You are not allowed to use mathematical library functions, like those in math.h .
Also you are not allowed to implement and use ‘Taylor Expansion’ (series ex-
pansion) of functions. i.e. taking square root shall be done by implementing the
high-school-method.

Below you see a reminder which goes through the steps of square-rooting 73441.

73441 73441

Group digits into two,
starting at the right.

73441

Guess sqrt as

2 2

73441
4

334
The next 2-digit
After subtraction

group is moved down.

Square it

329

73441
4

334

271

7

329
541

47 541
7 1

541

541
0

Copy the guess digit up
RESULT

73441
4

334

27

7

329

329

541

47 54

Double

2

73441
4

334

4

Double

73441
4

334

2

47
Guess this digit

7

Guess this digit

Copy of the guessed digit

329

The guess shall be so that the result
of the multiplication becomes as close
as possible to 334, without exceeding it

73441
4

334

27

47
7

329

329

541

digit up
Copy the guessed

After the subtraction the
next 2-digit group is moved
down.

1 2 3 4

5 6 7

8 9 10

329

73441
4

334

27

7

329
541

47 541
7 1

541

Guess this digit

Copy the guess

Bingo, to have exactly
the same number will
give a 0 (zero) remainder,
which means 73441 was a
Square Number.

Copyright ©Göktürk Üçoluk 2009

54 ANOTHER NONSENSE STACK MACHINE

• No use of goto is allowed.

• Implement the stack as an array (that you will name as stack) with maximum
5000 elements. This also means that no test case will require more then 5000 po-
sitions on stack. Implement push, pop, empty, stacktop functions which
will operate on this global array. For any stack operation only make use these
four functions. Never examine/modify the stack array directly (by-passing these
functions).

• All numbers coming from the input will be in the range [0,1000]. You don’t have
to perform an additional check on it.

• The result (as well as the intermediate results) may well be >1000. But it is assured
that they will never exceed 109.

• A pop with an empty stack is an error. Your program shall check this always. If at
any stage the procedure requires this illegal operation it shall abort with exactly
the following output:

error

• The input/output specifications are extremely tight. The input is: integer numbers
entered one-per-line, and the input is terminated by an Control-D. The output is:
A single integer number or the above defined error message. No blank lines, no
additional information strings, NOTHING!

Copyright ©Göktürk Üçoluk 2009

MANY BODY PROBLEM 55

16 MANY BODY PROBLEM ’98 HOMEWORK 3

Introduction

This time we will be doing some physics in a graphical environment. Our is to imple-
ment a graphical simulation of a gravitational many-body problem.

The invariant property of a particle is characterized by a real number which we call
its mass and denote by the letter m. The dynamical property of a particle is charac-
terized by two vectors, namely its position ~r, and its velocity ~v. If we pick a Cartesian
coordinate system then a vector is represented by three numbers, which we call the com-
ponents of a vector and denote by a three-tuple of real numbers. (tuple has the meaning
of ‘ordered set’ in computer science).

To predict (compute) a particle system’s behavior in time, the only thing that we
have to know is the masses and the initial values of the dynamic properties of each
particle. then the laws of physics predict the future of the dynamics2

In the problem that we will handle today, due to Kepler’s Law, it is known that if
the initial velocities lie in a plane then the velocities in the future will stay in that plane.
Therefore we will deal with two-dimensional vectors for position and velocity. So, our
vectors will not be three-tuples but two-tuples.

Our system will consists of n particles. We will label our particles with integer sub-

scripts. For example, m4 will denote the mass of the 4th particle. The values in the
following table will be provided as input.

MASS INITIAL POSITION INITIAL VELOCITY

m1 (x01, y01) (v0x1, v0y1)
m2 (x02, y02) (v0x2, v0y2)

...
...

...
mn (x0n, y0n) (v0xn, v0yn)

On the next page you see such a many-body particle system with 3 particles.
Consider a single particle, as you know, velocity is the change in the position in unit

time. Normally we express this as a derivative, considering the unit-time as an infinitely
small number:

~v =
d~r

dt

If we discretise this, that means approximate the infinitely small by some ‘small’ num-
ber, then we write the above derivative as

~v =
∆~r

∆t

2We confine ourself to classical mechanics, which is quite correct at macro scale. If we go down to
atomic sizes then this approach will no more predict correct results, you must pick a quantum mechanical
approach

Copyright ©Göktürk Üçoluk 2009

56 MANY BODY PROBLEM

1
v :o

m3

x

m

m

1

2

2
v :o

or :1or :(-2,3.5)

(0.5,-1.5)
(-1,0)

(2,1)

(-1.5,-1)

(1,0)
3or :

3
v :o

:

:

:

17.5

7.25

42.4

2

y

The difference is that now ∆t is just a ‘small’ number. So if we call ∆t the unit-time,
then at any time t if a particle is at position ~r then after the unit-time the new position
will be:

~r + ∆t · ~v (1)

This is always true, even if the velocity is changing. If the particle is under any force
then its velocity will change. So at t we will have a velocity value ~v which will be
changed after unit-time has passed. The change in the velocity is called acceleration
and is denoted with the vector ~a. Newton’s second law provides a relation that gives us
the acceleration at any time the particle will attain, if we know the force acting on the
particle at time t as well as the mass of the particle, then:

~a =
~F

m

By definition ~a is:

~a =
d~v

dt

Again if we discretise the time and consider a unit-time, a velocity ~v will change to

~v + ∆t ·
~F

m
(2)

In order to calculate all the dynamics of a single particle we have to know what forces
are acting on it. Force is superposable, that means if you know that on a particle there

are two forces ~F1 and ~F2 acting, then you can assume that these forces can be substituted

by a single force ~Fsum which is ~Fsum = ~F1 + ~F2. Hence, generally speaking, if a particle
is under m number of forces then the resulting force is the vector sum of all of them:

~Fsum =
m∑

i=1

~Fi

Copyright ©Göktürk Üçoluk 2009

MANY BODY PROBLEM 57

Now, what is the force exerted by some other particle p′ on the particle p? We will
consider in this problem a gravitational force. As you now, the gravitational force is
inverse quadratic proportional to the distance between the two particles.

~F =
−G ·m ·m′

‖~r′ − ~r‖2
· ûrr′

G is the so called universal gravitational constant, which is a real number. Furthermore,
ûrr′ is the unit vector in the direction from particle p to p′. It other words it is simply

(~r′ − ~r)/‖~r′ − ~r‖. So, we could have written the force as:

~F = −G · m ·m′

‖~r′ − ~r‖3
· (~r′ − ~r)

If we are going to make use of the superposition principle and calculate the resulting
force acting on a particle pi by all other particles, we can write:

~Fisum
=

m∑

j=1

j 6=i

−G · mi ·mj

‖~rj − ~ri‖3
· (~rj − ~ri)

Taking all constants out and rearranging the order of subtraction :

~Fisum
= G ·mi ·

m∑

j=1

j 6=i

· mj

‖~rj − ~ri‖3
· (~ri − ~rj) (3)

With the equations (1), (2) and (3) it is possible to calculate new positions and veloc-
ities for all particles after a unit-time ∆t is passed. (Provided that the initial positions and
velocities are given)

Problem

You will be given the value of the G constant, the unit-time ∆t, and a set of particles’
mass and initial (position and velocity) values. You are provided with some graphics
toolbox (some C-functions library) . This toolbox enables you to create a window of a
given size, draw lines, rectangles, circles and put text at any place in it. In the proceeding
subsections you will find the description of how to use it.

You are expected to draw a simulation of the system’s actions with the time changing
in unit-time steps. The iteration is as follows:

1. Use the initial values for positions and velocities.

2. Draw at the positions the particles (of an area size proportional to their mass)

3. Using the equations (1), (2) and (3) calculate new positions and velocities

4. Continue from item [2].

Copyright ©Göktürk Üçoluk 2009

58 MANY BODY PROBLEM

How-to-Do’s

• You are provided with some facilities for drawing in an X-windows environment,
these are:

Some header files: Your top lines of your hw3.c file shall contain

#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/cms.h>
#include <xview/xv_xrect.h>
#include "/shared/courses/ceng140/hw3.h";

An X-window: You will have a graphical X-window poping up when you run
your program. you don’t have to do any additional work to create the win-
dow. The window size is fixed to be 1200 units in horizontal, 800 units in ver-
tical direction. The origin is at the top-left corner of the window. From now
on we will refer to the distance of a point in the window, measured in the hor-
izontal left-to-right direction and starting from the origin as the x-coordinate;
and similarly, in the vertical top-to-bottom direction (starting form the origin)
as the y-coordinate.

Functions for drawing: Through the included hw3.h file you have (automati-
cally) three functions available:

DrawLine(int x1,int y1,int x2,int y2) As the name suggests, this
draws a straight line from the coordinates (x1 , y1) to (x2 , y2)

DrawCircle(int x,int y,int r) Draws a circle which has its center
at (x , y) and is of a radius r units.

DrawString(int x,int y,char *text) At (x , y) places the string which
is pointed by text. The start of the string is at the given coordinate. Each
character position is about 6 units wide.

PenColor(int x) For x use one of the following colors (which are built-
in integer constants): WHITE, RED, GREEN, BLUE, ORANGE, AQUA, PINK,
BLACK. The canvas that you draw on is in WHITE. You can pick a ‘pen’
of the provided colors by this function. Until a new ‘pen’ is picked all
drawings is done with that color.

A main function: The actual main() function is defined in the header file hw3.h
. At the start of this main() function some initializations are performed (you
don’t have to bother what these are). Then a function which is named as
student main() is called. Therefore in this homework

– DO NOT define a function with name main() .

– DEFINE a function with name student main() to do whatever you
would normally do in your main() function definition.

A make file: You are provided with a make file

/shared/courses/140/Makefile

Copyright ©Göktürk Üçoluk 2009

MANY BODY PROBLEM 59

You shall copy this file to your work directory (do not rename it). Then a
simple command as

make

will perform the compilation and linking with the correct libraries of your
hw3.c file. The executable will have the name hw3 and will be placed in
your working directory. (Note that the make file does not take an argument like
hw3.c).

• To remove some drawing from the canvas simply pick the white pen, and redraw
the drawing.

• To wait a specific amount of time you can use the usleep() function. The argu-
ment denotes the time (in microseconds) the program will wait before it proceeds.

Specifications

• There will be at least 1 particle and at most 20 particles.

• The input will come from the standard input, as usual. Except Delay, all values in
the input are float . That means read them with "%f" .

• All coordinates that come from the input are similar to what is in the figure above.
So, the input is so that the origin is expected to correspond to the midpoint of
the window. It is your resposability to make the necessary conversion (note that
X-windows uses a different coordinate axis system for drawing)

• The structure of the input is as follows:

G Delay Maxx Maxy

m1 x01 y01 v0x1 v0y1

m2 x02 y02 v0x2 v0y2
...

...
...

mn x0n y0n v0xn v0yn

It is your responsibility to detect what n is. Delay is an unsigned integer. It is
the delay time, that you shall wait between a view of the former system and the
following one. You shall implement it as a function call to a library function with
the name usleep . This function call shall be placed into the iteration after a ‘re-
fresh’ of the display and before you do the ‘new’ position calculation. The Delay
number is in microseconds and it is quite possible that it is a number which re-
quires 4 bytes. You shall use this number as the argument of the library function
usleep() . usleep has its prototype information in the header file unistd.h .
On Linux the argument is an unsigned long and on Solaris it is an unsigned
int (as you note on both systems it is a 4 byte number). So, on Linux read it into
an unsigned long variable using "%lu" format, and on Solaris read it into an
unsigned int variable using "%u" format.

Copyright ©Göktürk Üçoluk 2009

60 MANY BODY PROBLEM

Maxx/Maxy are those x/y coordinate values which correspond to the right/top
edges of the window. (i.e. if Maxx is 20.5 then a x coordinate value of 20.5 in
the input will place the particle exactly on the right edge of the window.)

• The program does not have an exit criteria. The simulation shall go on and on.
The X-window kill icon, or control-C will be used to kill the program.

• The particle with the smallest mass shall be represented with a circle of radius 2
pixels and largest shall be represented with a circle of radius 20 pixels. All particles
shall have areas which are linearly proportional to their masses. It is ok to have a
±1 pixel approximation.

• In contrary to the previous hw’s, in this homework you are allowed to do varia-
tions on the output screen (put additional information).

Copyright ©Göktürk Üçoluk 2009

POLYNOMIAL ALGEBRA 61

17 POLYNOMIAL ALGEBRA ’98 HOMEWORK 4

Problem

In this homework you will be doing some simple computer algebra. The aim is to write
a program which is able to input single variable polynomials, namely in (x), can store
them under variable names and is able to evaluate any expression which can involve
those variables, their first order derivatives, multiplication, addition and subtraction.

You are expected to store the polynomials internally in link lists; holding only non
zero coefficients and the powers of the terms in the elements of the link lists..

Specification

• All more then one whitespaces (including end-of-lines) in the input are redundant
and are equal to only one blank.

• The input is in one of the following form

1. SETvariable = polynomial ;

2. EVALexpression ;

where

– variable is any identifier (C-like) of maximum 10 characters.

– polynomial is a polynomial expression where the polynomial is written in
powers of x . It is of a flat structure where monomials are separated by either
a + (plus sign) or a - (minus sign). (In the input monomials are not necessar-
ily ordered from highest to lowest power, but it is guaranteed that a power
appears only once (if it does)).

– A monomial is in one of the following form

* a natural number (Example: 453)

* x

* a natural number x (Example: 453x)

* xˆ a natural number (Examples: xˆ2 , xˆ1)

* a natural number xˆ a natural number (Examples: 453xˆ2 , 32xˆ1)

– Whitepace is not of any importance and can appear anywhere except in a
number. Here are several examples of such polynomials:

x ˆ 2 - 1
xˆ2 -1
x ˆ1001 +673xˆ 23+7
453x - 13xˆ102 + 4xˆ1
1358 x + xˆ10

Copyright ©Göktürk Üçoluk 2009

62 POLYNOMIAL ALGEBRA

– expression is one of the following

* variable

* variable’

* (expression)

* expression+expression

* expression- expression

* expression* expression

Multiplication has higher precedence over addition and subtraction. Paren-
thesis have the usual meaning of grouping.

• The action of SET is self-explanatory. It binds the polynomial to the variable as
value.

• The action of EVAL is evaluating the expression and obtain a single polynomial.
Then print this resulting polynomial. The evaluation scheme is as follows:

EXPRESSION RESULT

variable Polynomial bound to variable
variable’ Derivative polynomial wrt. x

expression operation expression Polynomial operation

The print of a resulting polynomial is expected to be

– Zero coefficient free: (the term will be dropped).

– Zero power free: (the 1 and 0 power will not be shown).

– Unity coefficient free: (A coefficient of 1 will not be shown).

– In descending power order: (highest power first, lowest power last in line).

– Not contain any end-of-line in the polynomial.

• All internal representations for coefficients and powers shall be long int (which
is of size 4 bytes in our department). If any result at any stage of a calculation is
going to cause an overflow you are expected to print a single line of output and
quit the program:
OVERFLOW

• If a variable does not have a bound polynomial then you shall print a single line
of output and quit the program:
NO VALUE FOR:variable

• Except those above, you can assume that the expression itself is error-free (paren-
thesis are balanced, etc.)

• The expression will not exceed 80 characters.

Copyright ©Göktürk Üçoluk 2009

POLYNOMIAL ALGEBRA 63

• Dynamic memory allocation shall only be used for allocating link list elements.
You are not allowed to use an array representation at any stage of the polyno-
mial representation. There is no limit on the size and number of monomials in a
polynomial. You are allowed to use arrays only

– to store [variable,bounded polynomial] information;

– for stack purpose. (you will use stacks in the evaluation phase).

• Deallocate (free) unused memory. (e.g. re-bound variables’ former polynomial
values (the link list) will no more be used, so deallocate the elements).

• There will be limits set for the execution time. Watch out for announcements at
tin.

How-to-Do’s

• For the reading (parsing) of the expression and the evaluation of it there exists a
one-pass algorithm which is called “Dijkstra’s Algorithm for Infix to Postfix Con-
version”. You can find it in many Data Structure books.

• Construct the polynomial link list in an ordered form, on-the-fly. While you are
reading, search for the position of the monomial to hand and then insert it into the
link list.

• Store the variable, bound polynomial information into an array of structures. where
the structure is of nature:

struct value_table
{ char variable[11];

EP polynomial; } / * for EP: look up lecture notes

Copyright ©Göktürk Üçoluk 2009

64 POLYNOMIAL ALGEBRA

Sample run

Below (•) is denoting a user typed in line and (◦) is denoting a computer generated
output. These markers are not part of the input/output text.

• SET A = x** 6 - 18 * x** 5 + 135 * x** 4 - 540 * x** 3 + 1215 * x** 2 - 1458 * x + 729;

• SET B = x** 3 + 9* x** 2 + 27 * x + 27;

• SET C = 16* x** 4 - 288 * x** 3 + 1944 * x** 2 - 5832 * x + 6561;

• SET D = x** 2 + 2* x + 1;

• SET F = 3;

• EVAL A-B;

◦ xˆ6 - 18xˆ5 + 135xˆ4 - 541xˆ3 + 1206xˆ2 - 1485x + 702

• EVAL B+C;

◦ 16xˆ4 - 287xˆ3 + 1953xˆ2 - 5805x + 6588;

• EVAL A* B;

◦ xˆ9 - 9xˆ8 + 216xˆ6 - 486xˆ5 - 1458xˆ4 + 5832xˆ3 - 19683x + 19683

• EVAL A’;

◦ 6xˆ5 - 90xˆ4 + 540xˆ3 - 1620xˆ2 + 2430x - 1458

• EVAL A* D-B;

◦ xˆ8 - 16xˆ7 + 100xˆ6 - 288xˆ5 + 270xˆ4 + 431xˆ3 - 981xˆ2 - 27x + 70 2

• EVAL A* (B-D);

◦ xˆ9 - 10xˆ8 + 16xˆ7 + 116xˆ6 - 198xˆ5 - 1728xˆ4 + 5400xˆ3 + 972xˆ 2 - 19683x
+ 18954 (actual output will not contain any line break)

• EVAL C’* (C-B+D * D);

◦ 1088xˆ7 - 32928xˆ6 + 436560xˆ5 - 3258968xˆ4 + 14685688xˆ3 - 3 9730392xˆ2
+ 59554440x - 38112120 (actual output will not contain any line break)

• EVAL D* D-(D-1) * (D+1) = 1;

◦ 1

• EVAL B’-F * (X+3) * (X+3) + F = 0;

◦ 3

• EVAL A* A* A* A = x** 24 - 72 * x** 23 + 2484 * x** 22 - 54648 * x** 21 + 860706 * x** 20

◦ OVERFLOW

• EVAL A* D-K;

◦ NO VALUE FOR:K

Copyright ©Göktürk Üçoluk 2009

GENETIC ALGORITHMS-I 65

18 GENETIC ALGORITHMS-I ’99 HOMEWORK 1

Introduction

Welcome to the series of Ceng. 140 homeworks of this semester. This time you will be experi-
menting with a problem solving technique of Computer Science (CS) which became popular in
the recent years, namely Genetic Algorithms (GA).

As it is not the first time in science history, in this technique CS has stolen (or more politely,
‘got inspiration of’) the fundamental idea from mother nature.

As you know from your high school biology courses, evolution of life is based on a genetic
mechanism. Here the problem is to have an organic substance which is able to survive it the rough
environment that we call nature. The solution to this problem is a genetic code that encodes all the
blue prints of a survival machine of organic construction the “living specie”.

As a solution mechanism the genetic code has some properties:

• Over a long period of time some genetic codes survive, some don’t. Those that survive
are the fittest. So, there is an external evaluation mechanism which ranks different solutions
(genetic codes) for being the fittest.

• Genetic code interact with other genetic code, in a process that we call crossover. Though
it is wrapped into some wonderful and most romantic event as ‘love’, a selfish gene3

crossover with another selfish gene. So there are two off-spring codes which are a brand
of their parent codes.

• Occasionally some part of the code undergoes a random change. This might be due to a
γ-ray hitting a molecule, or some erroneous chemical reaction. The key is that this occurs
‘rare’ and is a very local alternation. We call this mutation.

• Each genetic code has a life time. Then it dies. The next generation will live in the next
period. The ”right to live” for a child is solely based on the result of its evaluation. If it is
far from being ”fit” then it will be removed from the genetic pool.

GA, adopts exactly this scheme. When we decide to solve a world problem by means of GA
we do the following:

1. Determine a mapping of the

Problem Solution Space 7−→ Space of Binary Strings

For sake of simplicity we choose a fix length for of the binary strings. In other words, we
find a binary string representation for the problem solution.

2. Create a pool of such strings. (usually this is an array of binary strings).

3. Randomly (but with an even randomness) fill out the binary strings with initial values.

3The term of selfish gene is due to Richard Dawkins, the author of th marvelous book The Selfish Gene
published by Oxford Univ. Press. first in 1976

Copyright ©Göktürk Üçoluk 2009

66 GENETIC ALGORITHMS-I

4. Device a function Eval

Eval : Space of Binary Strings 7−→ R

so that for each binary string s (which encodes a solution), Eval(s) returns a real number
that corresponds to the degree of how fit s is (as being a solution to the world problem).

5. Evaluate each member of the pool by means of Eval() and keep the ‘evaluation’ results.

6. Randomly mate all binary strings in pairs. Among a pair, at a randomly chosen point per-
form a crossover (do this by cutting both strings into two, exactly at that chosen crossover
point, and then switch the binary segments after the crossover point). So obtain two off-
springs.

7. Evaluate all off-springs (since a pair of off-springs are obtained by mating a pair of binary
strings the number of off-springs are exactly equal to the number of the parent strings).

8. Among the new strings decide who will live and who will die: Replace the least fit n
off-springs by the n best fits of the parent (former) strings.

9. Make the new generation the current generation and continue from step (6) if a termina-
tion criteria is not met yet.

THE µDICTIONARY OF GA JARGON:

Gene: A portion of the solution encoding binary string which cor-
responds exactly to a single feature (parameter) of the solu-
tion.

Chromosome: The binary string that encodes a solution of the tar-
get problem. This is usually an encoding of several parame-
ters which, when determined, form the solution of the prob-
lem.

Allele: The set of all possible (admissible) values a particular gene
can take.

Problem

In a series of three homeworks we will attack a problem which will be explained below and try
to solve it by means of a GA technique.

The problem is to place given rectangles on a square grid so that

• No rectangles overlap!

• The bounding box (a smallest rectangle that includes all the rectangles) has a minimal area.

• Rectangles can be placed are allowed to be placed anywhere provided that one of their
sides (any of it) is parallel to the horizontal direction. Furthermore all corners have to
remain inside the grid (no clipping).

In the input of the problem you will be given the dimensions of the rectangles. Here is an
example of a random placement of such given rectangles On a 20 × 20 grid (this is of course far
from being a solution).

Copyright ©Göktürk Üçoluk 2009

GENETIC ALGORITHMS-I 67

This random placement has a bounding box (indicated in the figure by a dashed line-box) of
13 × 17 which means an area of 221. But this placement does not qualify to be a solution at all,
since there are overlapping regions of some rectangles.

Below is a more organized placement of the same rectangles. This time we have a candidate
for a solution.

This placement has a bounding box of 12×17, an area of 204 and no overlapping regions among
the rectangles.

Here is a solution which is even a better one: the bounding box is 13 × 14 which means an
area of 182.

Copyright ©Göktürk Üçoluk 2009

68 GENETIC ALGORITHMS-I

Copyright ©Göktürk Üçoluk 2009

GENETIC ALGORITHMS-I 69

PART I

Specifications

• You will be dealing with a grid of 256 × 256. the origin of the grid is labeled as (0, 0).
This means that the upper-right corner of the grid is (255, 255). We will denote the hor-
izontal axis with the letter x and the vertical axis with y. In a 2-tuple representation our
convention will be writing (x, y) (as usual).

• Any coordinate (i, j) in this series of homeworks have both i and j positive integers.

• Your program will read the

Width, Height, xleft, ylower, inverted

information from the standard input. You are given that there are at most 1000 rectangles.
Each input line will contain 5 byte-integers corresponding to the information of one of
the rectangles. (There will be no other characters on the line except these five numbers which
are separated from each other by blanks only). No information (like an integer at the start of
the input) of how many actual lines are present in the input will be given! The input will
terminate with the END-OF-FILE character (ctrl-D on the UNIX system).

A possible input for the example above is:

37 19 17 32 0
5 9 9 15 1
12 4 8 0 0
7 11 0 0 0
10 7 1 251 0
2 3 19 101 1

cntr-D

In this input there are 6 rectangles defined. The rectangle defined in the first line
of the input has its lower-left corner placed at (17, 32). The last integer in the
line, which will be one from {1, 0}, indicates whether the width is parallel to the
horizontal or to the the vertical direction.

0 : means width is aligned parallel to x-axis.

1 : means width is aligned parallel to y-axis.

So, the rectangle described in the first line has its upper-right corner placed at
(54, 51).

The rectangle described in the second line is inverted and has its lower-left corner
at (9, 15), its upper-right corner at (18, 20)

The fifth line describes a placement which is exceeding the right boundary of the
grid. We call such placements as illegal.

• There is no order imposed on the input lines.

Copyright ©Göktürk Üçoluk 2009

70 GENETIC ALGORITHMS-I

• The output consists of a single line of four numbers: an integer, followed by two
unsigned byte-integers, and then a long integer:

Countillegals Boundingboxwidth Boundingboxheight Areaoverlap

Here

Countillegals is the count of rectangles that have not all of its corners in the grid. If
no such rectangle exists this number will be 0 (zero).

Boundingboxwidth is the width of the bounding box that encloses all the rectangles
except the illegals.

Boundingboxheight is the height of the bounding box described in the item above.

Areaoverlap is the total overlapping area (attention: consider their overlapping area
only once when you consider two rectangles). Do not consider illegal rectan-
gles.

Copyright ©Göktürk Üçoluk 2009

GENETIC ALGORITHMS-II 71

19 GENETIC ALGORITHMS-II ’99 HOMEWORK 2

PART II

Problem

Mainly the task of this homework is to visualize the work done in PART I (previous homework.
You will be creating a window which will display the placement of some given rectangles on the
grid. Also you will evaluate the placement (which will later be used in the GA) and display this
evaluation result (a floating point number).

Specifications

You are provided with some facilities for creating and drawing in an X-windows environment,
these are explained in the How-to-Do section.

The job can be described by means of the following items:

• The first line of the input consists of three floating point weights.

Weightillegals Weightbounding box area Weightoverlap area

• The input following the first line is exactly the same as in Homework 1.

• None overlapping regions of rectangles will be drawn by their edges. Black will be used
for edges, white for interior.

• Overlapping regions will be drawn by a grading from Light Pink to Dark Red. Light-Dark
interpretation is as follows:

Exactly 2 rectangles are overlapping Lightest Pink.

Exactly 3 rectangles are overlapping One degree darker Pink than above.

Exactly 4 rectangles are overlapping One degree darker than above.

...

Exactly 10 rectangles are overlapping One degree lighter than Dark Red.

11 rectangles or more are overlapping Dark Red.

• An illegal placement will be drawn with Black fill.

• Any color (Light Pink - Dark Red) over black has (more) visibility. (ie. If a non-illegal
rectangle overlaps with an illegal one, then the overlapping region will be drawn by a
Reddish color (according to the coloring rule explained above)). This applies also for the
edges.

• The bounding box is expected to be drawn (as a full drawn black edge) rectangle. (hint:
draw it at last).

Copyright ©Göktürk Üçoluk 2009

72 GENETIC ALGORITHMS-II

• In the bottom-right corner an overall evaluation grade for the input will be displayed (in
black). This is a floating point number computed as follows:

Weightillegals ×Countillegals

+
Weightbounding box area × (Boundingboxwidth ×Boundingboxheight)

+
Weightoverlap area ×Areaoverlap

Here the meanings of

Countillegals Boundingboxwidth Boundingboxheight Areaoverlap

were explained in the previous homework.

HOW-TO-DO’s

• You are provided with some facilities for drawing in an X-windows environment, these
are:

Some header files: Your top lines of your hw2.c file shall contain

#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/cms.h>
#include <xview/xv_xrect.h>
#include "/shared/courses/ceng140/hw2.h";

An X-window: You will have a graphical X-window poping up when you run your pro-
gram. You don’t have to do any additional work to create the window. The window
size is fixed to be 800 units in horizontal, 900 units in vertical direction. The origin
of this drawing environment is at the top-left corner of the window.
Please note that this is different than the grid description. The grid has its origin

at the lower-left corner. While you are drawing you have do to a conversion to get

the picture correct!. . . think about it.

The grid will have its top-left corner at the point (20,20) [units] of the drawing en-
vironment, and will cover a horizontal span of (256 × 3 = 768 units) and again
(256 × 3 = 768 units) in the vertical span. This means a grid space of 1 will be
represented by 3 units in the drawing environment.

The bottom 800 × 132 stripe is where you will print the evaluation.

From now on we will refer to the distance of a point in the window (the drawing
environment), measured in the horizontal left-to-right direction and starting from
the origin as the x-coordinate; and similarly, in the vertical top-to-bottom direction
(starting form the origin) as the y-coordinate.

Functions for drawing: Through the included hw2.h file you have (automatically) three
functions available:

DrawRectangle(int x1,int y1,int x2,int y2) As the name suggests, this
draws a rectangle where the coordinates of two corners which sit on a diagonal
(of the rectangle) is given. It is the current pen color which is used for the edges.

Copyright ©Göktürk Üçoluk 2009

GENETIC ALGORITHMS-II 73

FillRectangle(int x1,int y1,int x2,int y2) Similar to above, but the
interior is filled with the current pen color.

DrawString(int x,int y,char *text) At (x , y) places the string which is
pointed by text. The start of the string is at the given coordinate. Each char-
acter position is about 6 units wide.

PenColor(int x) For x you can use one of the following colors

WHITE (is a define constant for 0),

BLACK (is a define constant for 1),

An integer in the range [2,11] for a color in the range [Light Pink,Dark Red].

The canvas that you draw on is in WHITE. You can pick a ‘pen’ of the provided
colors by this function. Until a new ‘pen’ is picked all drawings is done with
that color.

A main function: The actual main() function is defined in the header file hw2.h . At
the start of this main() function some initializations are performed (you don’t have
to bother what these are). Then a function which is named as student main() is
called. Therefore in this homework

– DO NOT define a function with name main() .

– DEFINE a function with name student main() to do whatever you would
normally do in your main() function definition.

A make file: You are provided with a make file

/shared/courses/140/Makefile

You shall copy this file to your work directory (do not rename it). Then a simple
command as

make

will perform the compilation and linking with the correct libraries of your hw2.c
file. The executable will have the name hw2 and will be placed in your working
directory. (Note that the make file does not take an argument like hw2.c).

• To remove/overwrite some drawing from the canvas simply pick the white/(some color)
pen, and redraw the drawing.

• While you develop your program you may need to wait a specific amount of time, for
this purpose you can use the usleep() function. The argument denotes the time (in
microseconds) the program will wait before it proceeds. DO NOT LEAVE THIS IN THE

CODE THAT YOU TURN IN.

Copyright ©Göktürk Üçoluk 2009

74 GENETIC ALGORITHMS-III

20 GENETIC ALGORITHMS-III ’99 HOMEWORK 3

– I understand. . .
– And understanding is happiness.

Rama Revealed

A.C. Clarke

PART III

Problem

In this third homework in the series you will be finding placement solutions for a set of rectan-
gles. The aim is to find a two dimensional distribution of the rectangles such that

• No rectangle overlaps,

• The bounding box is minimal.

In your first homework you have devised an evaluation function and in the second one you
have coded a display facility to visualize possible solutions.

This homework is the one in which a GA engine will be coded. The first homework intro-
duced how to realize a GA engine. In the following section a step-by-step construction proce-
dure will be described.

Specifications and How-to-Do’s

• The italic writings below are similar explanations given in HW1. They are followed by
technical explanations.

• Below the term string does not refer to the ‘string’ concept (convention) of the C language.
What is meant to be is merely an sequence (array) of byte values. So, don’t get confused.

1. Determine a mapping of the

Problem Solution Space 7−→ Space of Binary Strings

You shall pick an array representation (all allocations shall be done dynamically) in which
the i th array element corresponds to the placement of the lower-left corner of the i th
rectangle and the orientation information (which is from {0, 1} and is explained in HW1).

struct gene
{ char x, y, orientation; };

will serve well as the the array element’s structure.

Copyright ©Göktürk Üçoluk 2009

GENETIC ALGORITHMS-III 75

Rectangle Rectangle
GENE[N]
Rectangle

GENE[1] GENE[2]

x y orientation

of lower-left
corner of

Rectangle
2

orientationy-coordinate
of

Rectangle
2

x-coordinate
of lower-left

corner of
Rectangle

2

char char char

A C H R O M O S O M E

N21

By this you can represent a chromosome as a one-dimensional array of struct gene and
of a size N where N (N ≤ 100) will be determined from input (the count of rectangles to
be placed).

2. Create a pool of such chromosomes (usually this is an array of the binary strings)4.

In C this can be easily achieved by a pointer array of the pool size.

P O O L

The size of the pool shall be 300. You shall use in your program a #define constant :

#define POOLSIZE 300

3. Randomly (but with an even randomness) fill out the binary strings of P with initial values.

You can make use of the random() function, which prototype is defined in stdlib.h .
To understand the details do : man random.

For your convenience here are two functions that you may use, based on these library
functions.

4Actually, you will need a second pool to store the child chromosomes at each generation, so it is wise
to create two such pools right away, we will call these pools P and P ′, respectively.

Copyright ©Göktürk Üçoluk 2009

76 GENETIC ALGORITHMS-III

int random1(int n)
{

return (random()%n);
}

void randomize(void)
{

srandom((int) (time(NULL)));
}

random1(100) may return random integer values in the range [0, 99]. randomize()
initialize the seed of the random sequence to some arbitrary value (fetched from the real
time clock of the system). If you do not randomize() the sequence that you will obtain
by successive calls to random1() , will be the same.

4. Devise a function Eval

Eval : Space of Binary Strings 7−→ R

so that for each chromosome s (which encodes a solution), Eval(s) returns a real number that
corresponds to the degree of how fit s is (as being a solution to the world problem).

This is exactly what you have done as a part of HW2 (based on the work of HW1). The
‘weights’ which were inputted in HW2 is now something that you will be determining (in

order to get good solutions)5. Make them into #define constants which you define at
the top of your program. Write a function eval chromosome() which takes as input a
chromosome (presumably the pointer to it) and returns the real number that was printed at
the lower left corner of the screen of HW2.

5. Evaluate each member of the pool by means of Eval() and keep the ‘evaluation’ results.

This is quite clear, evaluate each member of the pool by means of this eval chromosome()
and keep the ‘evaluation’ results in an array which is the same size of the pool.

6. Randomly mate all chromosomes in pairs. Among a pair, at a randomly chosen point perform a
crossover (do this by cutting both strings into two, exactly at that chosen crossover point, and then
switch the binary segments after the crossover point). So obtain two off-springs.

The second pool P ′ (the same size and structure of the formerly explained one P) will be
filled with the new generated chromosomes. The generation is basically done by crossing
existing chromosomes and producing two children per crossed pair. In this generation
process you will randomly choose two chromosomes out of the pool, mate them, cross
them, hence produce two new chromosomes, and do this until no (unmated) chromo-
somes remain. To do this, somehow keep an information that they are chosen (to avoid
re-choosing an already mated one). You have to device a function cross chromosome()
which takes in two (pointers to) chromosomes, and two places (presumably pointers to the
places in the second pool) where the result of the crossing will be stored.

5This part is extremely important, after you got your program working we want you to experiment
with the genetic engine and tune it. This is a point where you will put some analytic thought in and try
to improve your GA engine’s performance. Your grading will be effected by the performance of your
engine.

Copyright ©Göktürk Üçoluk 2009

GENETIC ALGORITHMS-III 77

The crossing process is somewhat important, so it is worth to spare some words:
Assume two mated chromosomes are:

45 229 0 97 171 1 239 45 1

63 44 1 32 109 0 116 2 1CHROMOSOME
II

CHROMOSOME
I

GENE[1] GENE[2] GENE[N]

If we take a closer look (at bit level) and also consider a randomly chosen crossing point
we will see:

I

II

CHROMOSOME

CHROMOSOME

GENE[2]

01100001 00101101

00000010

11100101 00000000 11101111 0000000100000001

00101100 00000001 00100000 01101101 00000000 01110100 00000001

00101101

00111111

10101011

Randomly chosen cross-point

GENE[1] GENE[N]

As you may observe, it is quite possible that the crossing point will hit some intermediate
bits. Your crossing algorithm shall be able to do this type of a random choice and fur-
thermore produce the correct off-springs (children). Here is what is expected for the two
example chromosomes crossed at the indicated point:

CHILD

CHILD

I

II

GENE[2]

0110000111100101 00000000

00101100 00000001 00100000 01101011

00101101

00111111

10101101

GENE[1] GENE[N]

00000000

00000001 11101111

01110100 00000010

00101101

00000001

00000001

The numerical values these bits corresponds to, can be visualized as:

II

I
CHILD

CHILD

45 229 0 97 173 0 116 2 1

63 44 1 32 107 1 239 45 1

GENE[1] GENE[N]GENE[2]

At the end of this crossing process, beside the existing chromosomes in the first pool, you
have a second pool full of child chromosomes.

7. Randomly pick some chromosome and mutate.

Mutation is extremely simple, it is based on the biological fact that while cross over takes
place, randomly errors occur. These errors sometimes help to find better solutions. In your
case you will take a number of chromosomes from P ′ and change a single bit in there. The
probability of having an error is 1 per 2000 bit-crossovers. Making use of the chromosome
length you can calculate how many bits have to be mutated:

Total no. of bits crossed = N × (2× 8 + 1)× 1

2
× POOLSIZE

Copyright ©Göktürk Üçoluk 2009

78 GENETIC ALGORITHMS-III

So, (Total no. of bits crossed)/2000 bits in the pool P ′ have to be mutated. In a for loop
randomly pick among P ′ and flip a random bit in the chromosome. Do not keep a record
of this, so there is a probability of a mutated chromosome to get once more mutated.

Pay attention not to generate invalid values for the orientation fields (do not touch any
bit except the least-significant one). This ‘sensitivity’ does not have to exist in generating
invalid placements (so do not worry about the mutations you do on the x or y fields. 6

8. Evaluate all off-springs.

Similar to the evaluation process carried out for P, do an evaluation on the chromosomes
in P ′. You shall keep these results also. It is wise to write a function which takes two
arguments in: a pool and a fitness result array (of double type elements) and fills out the
array (i th element holds the fitness value of the i th chromosome in the pool).

9. Among the new strings decide who will live and who will die: Replace the least fit n off-springs by
the n best fits of the parent (former) strings.

This is called elitism. Those who were the fittest of the former generation gets a right to live
for one more generation (cute eh??).

To do this you have to sort the pool according to to the fitness. For your convenience we
provide you such a sorting routine:

void pool_sort(gene * pool[],double fitness[], int n)
{

/ * fitness holds result of Eval() with the meaning big number => bad fit * /
/ * Sorts in descending fitness order i.e. fitness[0]<fitness [1] . * /
/ * Remember that the (0.0) would be the best fitting: so fitness [0] is the * /
/ * smallest number hence is the best of the pool. * /
/ * n is the count of elements to be sorted. * /

register int i, s; int f;
gene * ivaluep, * eltp;
double elt,ivalue;

for(i=1; i<n; i++)
{ elt = fitness[i]; eltp = pool[i];

s = i;
f = (s-1)/2;
while(s>0 && fitness[f]<elt)

{ pool[s] = pool[f]; fitness[s] = fitness[f];
s = f;
f = (s-1)/2; }

fitness[s] = elt; pool[s] = eltp; }
for(i=n-1; i>0; i--)

{ ivalue = fitness[i]; ivaluep = pool[i];
fitness[i] = fitness[0]; pool[i] = pool[0];
f = 0;
if (i==1) s = -1;
else s = 1;
if (i>2 && fitness[2]>fitness[1]) s=2;
while (s>=0 && ivalue<fitness[s])

{ fitness[f] = fitness[s]; pool[f] = pool[s];
f = s;
s = 2 * f+1;
if (s+1 <= i-1 && fitness[s] < fitness[s+1]) s++;

6The reason for this is that the chromosome is punished for an illegal placement by the fitness function
anyway, so in whole this bad feature will try to correct itself over the evolution process. This does not
exist, however, for the orientation, i.e. the fitness function does not posses any punishment for illegal
orientation values.

Copyright ©Göktürk Üçoluk 2009

GENETIC ALGORITHMS-III 79

if (s > i-1) s = -1; }
fitness[f] = ivalue; pool[f] = ivaluep;

}
}

The value of n is something that you shall be determining. Experience shows that this
shall be 5-10% of the pool size. Set this value by a #define parameter that you shall
name as KEEPCOUNT, to an appropriate value you decide.

10. Make the new generation the current generation and continue from step (6) if a termination criteria
is not met yet.

This is simple, just copy the new generation (pool P ′) to the current generation (pool P).7

The termination criteria is reaching a number of iteration (going through this generation-
evaluation cycle). This number will be given to you in the input data. It is of long type.

11. After every m number of generation you are supposed to call your ‘display’ routine (mak-
ing use of HW2) for the best in the pool. Modify your routines to display the generation
count in the lower-left corner of your screen. The m value will be provided at input. An m
value of 0 (zero) means no X-window display of the placement is desired in that run.

12. When the termination criteria is met, output (to stdout) the information stored in the best
chromosome. The format of the output is explained in the I/O section that follows.

13. The maximal count of rectangles is 100, but this does, by no means, give you the right to
make a maximal memory allocation of 100 genes. All bulk memory allocations have to be
done dynamically on the principle of exactly as much as needed. We will be checking the
size of the memory your program is requesting, at run time.

14. You will be given inputs which have solutions.

15. Implementations of other placement methods (other than the described GA) will receive
0 (zero) grade, regardless of their performance (Yes, we will be looking into the code).

16. You shall include necessary header files (like the ones of HW2).

I/O

Input

The input consists of a single line which holds some parameter values of the run followed
by maximum of 100 lines, of similar nature, each of which corresponds to a rectangle.

First line:

Count of iteration m

Each of the following lines:

Rectanglewidth Rectangleheight

7Actually you even don’t need to copy it, it is enough to swap the pointers in the pool arrays
(∀i, P [i]↔ P ′[i]).

Copyright ©Göktürk Üçoluk 2009

80 GENETIC ALGORITHMS-III

Output

First line:

Boundingboxwidth Boundingboxheight

Each of the following lines:

x y orientation

These lines shall be in the same order of the input, and contain information about the
placement of the corresponding rectangle. The values x and y refer to the coordinates
of the lower-left corner of the rectangle. orientation is of the same meaning of the
last value in any line of the HW1 input.

Copyright ©Göktürk Üçoluk 2009

DNA FINGERPRINTING 81

21 DNA FINGERPRINTING 2000 HOMEWORK 1

Introduction

This time you will be experimenting with the DNA Fingerprinting techniques. You will be
writing a program by which you will perform paternity/maternity identification.

What is DNA?

DNA (Deoxyribonucleic acid) is a chemical structure that forms chromosomes. A piece of
a chromosome that dictates a particular trait is called a gene.

Structurally, DNA is a double helix: two strands of genetic material spiraled around each
other. Each strand contains a sequence of bases (also called nucleotides). A base is one of
four chemicals (adenine, guanine, cytosine and thymine).

The two strands of DNA are connected at each base. Each base will only bond with one
other base, as follows: Adenine (A) will only bond with thymine (T), and guanine (G) will
only bond with cytosine (C). Suppose one strand of DNA looks like this:

A-A-C-T-G-A-T-A-G-G-T-C-T-A-G

The DNA strand bound to it will look like this:

T-T-G-A-C-T-A-T-C-C-A-G-A-T-C

Together, the section of DNA would be represented like this:

T-T-G-A-C-T-A-T-C-C-A-G-A-T-C

A-A-C-T-G-A-T-A-G-G-T-C-T-A-G

DNA strands are read in a particular direction, from the top (called the 5’ or “five prime”
end) to the bottom (called the 3’ or “three prime” end). In a double helix, the strands go
opposite ways:

5’ T-T-G-A-C-T-A-T-C-C-A-G-A-T-C 3’

3’ A-A-C-T-G-A-T-A-G-G-T-C-T-A-G 5’

What is DNA Fingerprinting?

The chemical structure of everyone’s DNA is the same. The only difference between peo-
ple (or any animal) is the order of the base pairs. There are so many millions of base pairs
in each person’s DNA that every person has a different sequence. Using these sequences,
every person could be identified solely by the sequence of their base pairs. However, be-
cause there are so many millions of base pairs, the task would be very time-consuming.
Instead, scientists are able to use a shorter method, because of repeating patterns in DNA.
These patterns do not, however, give an individual “fingerprint,” but they are able to
determine whether two DNA samples are from the same person, related people, or non-
related people. Scientists use a small number of sequences of DNA that are known to vary
among individuals a great deal, and analyze those to get a certain probability of a match.

Copyright ©Göktürk Üçoluk 2009

82 DNA FINGERPRINTING

Every strand of DNA has pieces that contain genetic information which informs an or-
ganism’s development (exons) and pieces that, apparently, supply no relevant genetic in-
formation at all (introns). Although the introns may seem useless, it has been found that
they contain repeated sequences of base pairs. These sequences, called Variable Number
Tandem Repeats (VNTRs), can contain anywhere from twenty to one hundred base pairs.

Every human being has some VNTRs. To determine if a person has a particular VNTR, a
Southern Blot is performed, and then the Southern Blot is probed, through a hybridization
reaction, with a radioactive version of the VNTR in question. The pattern which results
from this process is what is often referred to as a DNA fingerprint.

How is DNA Fingerprinting Done?

The Southern Blot is one way to analyze the genetic patterns which appear in a person’s
DNA. Performing a Southern Blot involves:

1. Isolating the DNA in question from the rest of the cellular material in the nucleus.
This can be done either chemically, by using a detergent to wash the extra material
from the DNA, or mechanically, by applying a large amount of pressure in order to
”squeeze out” the DNA.

2. Cutting the DNA into several pieces of different sizes. This is done using one or
more restriction enzymes.

3. Sorting the DNA pieces by size. The process by which the size separation, ”size frac-
tionation,” is done is called gel electrophoresis. The DNA is poured into a gel, such
as agarose, and an electrical charge is applied to the gel, with the positive charge at
the bottom and the negative charge at the top. Because DNA has a slightly nega-
tive charge, the pieces of DNA will be attracted towards the bottom of the gel; the
smaller pieces, however, will be able to move more quickly and thus further towards
the bottom than the larger pieces. The different-sized pieces of DNA will therefore be
separated by size, with the smaller pieces towards the bottom and the larger pieces
towards the top.

4. Denaturing the DNA, so that all of the DNA is rendered single-stranded. This can
be done either by heating or chemically treating the DNA in the gel.

5. Blotting the DNA. The gel with the size-fractionated DNA is applied to a sheet of
nitrocellulose paper, and then baked to permanently attach the DNA to the sheet.
The Southern Blot is now ready to be analyzed.

A given person’s VNTRs come from the genetic information donated by his or her parents;
he or she could have VNTRs inherited from his or her mother or father, or a combination,
but never a VNTR either of his or her parents do not have. Shown below are the VNTR
patterns for Mrs.Brown, Mr.Brown, and their four children: Mary (the Browns’ biological
daughter), Suzi (Mr.Brown’s step-daughter, child of Mrs.Brown and her former husband),
John (the Browns’ biological son), and Tansu (the Browns’ adopted daughter, not biologi-
cally related).

Copyright ©Göktürk Üçoluk 2009

DNA FINGERPRINTING 83

�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

��������������������������������

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

������������������

������������������

����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

����������������������������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

Mrs.Brown Mr.Brown Mary Suzi John Tansu

A VNTR of/inherited from Mrs.Brown, Biologic mother of Mary, Suzi and John

A VNTR inherited from Nizamettin Bey, Tansu’nun öz babasi

A VNTR of/inherited from Mr.Brown, Biologic father of Mary and John

A VNTR inherited from Hayriye Hanim, Tansu’nun öz annesi

A VNTR inherited from X-husband of Mrs.Brown, biologic father of Suzi

Problem

Assume you are given the Southern Blot results for a number of persons. For each person this
will be a sequence of distances, the distances of the rendered DNA strands (the parallel lines in
the figure above), all measured from the same edge of the paper. In reality the lines have some
thickness but we will assume that this is zero. Now, having to hand this sequence of distances
for each individual, the problem is to determine the parent-child relations (if any) among these
individuals.

Specifications

• You will be dealing with at most 100 individuals’ data.

• The distance sequence of each individual may contain at most 500 distances.

• A distance is an integer in the range [0,100000] (which suggests that you shall use long
int representation).

• Your program will read the data from the standard input. Each individual’s data is given
in an input line of the structure:

name n distance1 distance2 . . . distancen

Where name is a string without any whitespaces. The distances in a line may not be
sorted!
A possible input would be (this is a toy version):

Ahmet 7 10067 200 4001 300 3564 78089 6000
Mehmet 8 42 789 456 23005 10083 400 101 1002
Zuleyha 8 2980 458 103 807 67987 2 11 72100

Copyright ©Göktürk Üçoluk 2009

84 DNA FINGERPRINTING

• You are expected to print a list of geneticly related pairs. Those who have no relation
or a relation of higher order than 2 will not be printed. Each pair which is decided to
be printed will only be printed once. You will decide among two individuals X and Y
(assume X is appearing at the standard input before Y) by counting the matching distance
data and dividing this by nmax (where nmax is the max(< n of X >,< n of Y >)) and,
hence obtaining a percentage. Having this percentage to hand you will be using the below
given range information to determine the relation among X and Y . If the percentage is
less then 25% you shall decide that this pair will not be printed. A percentage at the lower
boundary is inclusive (i.e. 45% means 1.ORDER, as an exception to this 100% is still named
CLONIC).

%10090%80%70%55%45%25%

2.ORDER 1.ORDER INBREAD INCEST CLONESTRANGE

The match criteria of two distances d and d′ is defined as the hold of the following inequal-
ity.

|d− d′|
max(d, d′)

< 0.01

• The output will be done to the standard output and consist of lines where each line corre-
sponds to a pair. The structure of a line for a pair of the individuals X and Y is (assuming
X appeared at the standard input before Y)

[nameX , nameY] relation

where relation is one of the strings (2.ORDER, 1.ORDER, INBREAD, INCEST, STRANGE,
CLONIC)

So a possible three lines of an output would be

[Zulfikar,Bahriye] INBREAD
[Mahmut,Mustafa] 1.ORDER
[I-Pedro,II-Pedro] INBREAD
[DOLLY,SALLY] CLONIC

The line order is insignificant. You are free on this.

• The program runs and the checking of the results will be performed by a computer pro-
gram. Therefore it is mandatory to strictly obey the output format specifications. Do not

print additional information, do not attempt to beautify your output.

Copyright ©Göktürk Üçoluk 2009

WHERE TO MEET ON THE GLOBE? 85

22 WHERE TO MEET ON THE GLOBE? 2000 HOMEWORK 2

Introduction

In this homework you will be dealing with position information on our Globe.

Latitude and longitude form a geographical coordinate
system used for locating places on the surface of the earth.
They are angular measurements, expressed as degrees of
a circle measured from the center of the earth. The earth
spins on its axis, which intersects the surface at the north
and south poles. The poles are the natural starting place
for the graticule, a spherical grid of latitude and longitude
lines.

LATITUDE
Halfway between the poles lies the equator. Latitude is
the angular measurement of a place expressed in degrees
north or south of the equator.
Latitude runs from 0◦ at the equator to 90◦N or 90◦S at
the poles. Lines of latitude run in an east-west direction.
They are called parallels because they are equally spaced.
LONGITUDE Lines of longitude, called meridians, run
in a north-south direction from pole to pole. Longitude
is the angular measurement of a place east or west of
the prime meridian. This meridian is also known as the
Greenwich Meridian, because it runs through the origi-
nal site of the Royal Observatory, which was located at
Greenwich, just outside London, England. Longitude
runs from 0◦ at the prime meridian to 180◦ east or west,
halfway around the globe. The International Date Line
follows the 180◦ meridian, making a few jogs to avoid cut-
ting through land areas.

Copyright ©Göktürk Üçoluk 2009

86 WHERE TO MEET ON THE GLOBE?

DEGREES, MINUTES, SECONDS

A degree (◦) of latitude or longitude can be subdivided
into 60 parts called minutes (′). Each minute can be fur-
ther subdivided into 60 seconds (′′). One degree of lat-
itude equals approximately 111 km. Because meridians
converge at the poles, the length of a degree of longitude
varies, from 111 km at the equator to 0 at the poles (longi-
tude becomes a point at the poles). The diagram at left is
an example of a place located to the nearest second. It is
written as:
42◦21′30′′N 71◦03′37′′W
This place is city center, Boston, Massachusetts.

Problem

You will be given a list of places (name and coordinate). Then you will have two tasks to solve.

Task 1: Find that member of the given list (which we will call the meeting place) so that, the
sum of the flight distances from all the other places to this meeting place is minimum.

Task 2: You will be given a number n together with the list. The question now is, which n places
shall be removed from the list and which place shall be chosen as the meeting point so that
the sum of flight distances from the other places is minimum among all such possibilities.

Specifications

• Assume our World is a perfect sphere of circumference 40075.4 km. Use this as the base
for all calculations.

• You will be dealing with at most 300 places.

• 1 ≤ n ≤ 200.

• For arithmetic calculation use double type representation.

• Your program will read the data from the standard input.
The first line contains the n integer, alone. All the following lines are similar and are of the
structure:

name xx: xx: xxL1 xx: xx: xxL2

Where

name is a string without any whitespaces of maximal length 20.

xx:xx:xxL1 is the latitude information in which xx stands for degrees, minutes, seconds
respectively, and are separated by (:) colons. L1 is one of the letters N,S.

xx:xx:xxL2 is the longitude information in which xx stands for degrees, minutes, sec-
onds respectively, and are separated by (:) colons. L2 is one of the letters E,W.

The first lines of a possible input would look like (if e.g. n = 3):

Copyright ©Göktürk Üçoluk 2009

WHERE TO MEET ON THE GLOBE? 87

3
ankara 39:55:00N 32:55:00E
dublin 53:20:10N 06:15:15W

• Your output will consist of exactly two lines.

First line: Answer to Task 1 as
distance in kilometers (two decimal fraction digits) which is the sum of all flights to
the meeting place followed by the name of the meeting place (one space in between).

Second line: Answer to Task 2 as
distance in kilometers (two decimal fraction digits) which is the sum of all flights to
the meeting place followed by the name of the (new) meeting place (one space in
between) which is then followed by n number of names which you have decided to
remove.

A possible output would look like (if e.g. n = 3):

6432.23 konya
4601.00 ankara siirt urfa hakkari

• You can find interesting data/info at the following URLs.

http://members.aol.com/bowermanb/maps.html
http://www.infoplease.com/ipa/A0001769.html
http://www.indo.com/distance/

Copyright ©Göktürk Üçoluk 2009

88 LARGEST COMMON SUBTREE

23 LARGEST COMMON SUBTREE 2000 HOMEWORK 3

Introduction
This homeowork is a warm up for pointer usage.

Problem

You will be given a set of binary trees, represented in a linear form (below introduced). The
problem is to find the largest sub-tree contained in all of the given trees. For example consider
the below given three trees:

y z

x

e

f

g h c d e

f

g h

r s y

z x
Tree-I

r

r u y

b

s b

b

b

x e

g h

f

d c r s y

z x

e

f

g h

c d

Tree-II

r

r u y

b

s b

b

b

x e

g h

f

d c r s y

z x

e

f

g h

c d

r

r s y

z x

d

s

e

f

g h r s

z x

y c d

g h

f

e

Tree-III

The subtree in shaded area is the largest common subtree. The largeness is based on the
counts of nodes (terminal+nonterminal). Also note that, in this problem there is no difference in
a left or right branching. So, what is drawn as a left or right branch should actually be considered
as a sub-branch only (discarding its property of being on the left or right).

Specifications

• A tree is given in the input as a dotted-pair. A dotted-pair, for this problem, is defined in
the BNF notation as follows:
(−→ has the same meaning as ::=)

〈dotted-pair〉 −→ (〈dotted-pair〉 . 〈dotted-pair〉) | 〈letter〉
〈letter〉 −→ 〈a lower case letter from the english alphabet〉

Copyright ©Göktürk Üçoluk 2009

LARGEST COMMON SUBTREE 89

The input that would correspond to TREE-I, TREE-II, TREE-III of above would be:

(((y.z).x).((e.(f.(g.h))).(((c.d).(e.(f.(g.h)))).((r.s).(y.(z.x))))))
((r.((r.u).(y.((b.(((s.b).b).b)).x)))).((((e.((g.h) .f)).(d.c)).((r.s).(y.(z.x)))).((e.(f.(g.h))).(c.d))))
((r.(((r.s).(y.(z.x))).d)).(s.((e.(f.(g.h))).(((r.s).((z.x).y)).((c.d).(((g.h).f).e))))))

Each tree will be provided on a single line of input. There is no restriction on the length of
the line. There might be at most 100 trees.

• The output of your program is a single line, which is a dotted-pair, too. It is the dotted-pair
that corresponds to the largest subtree. There is no restriction on the left-right ordering of
the dotted-pairs you are going to print. A possible output for the above input is:

(((c.d).(e.(f.(g.h)))).((r.s).(y.(z.x))))

Another one is:

(((c.d).(e.(f.(h.g)))).((r.s).(y.(x.z))))

• If you decide that more than one subtrees are the ’largest’ then output any one of them.

• You cannot use arrays to store the trees themselves. An array usage is allowed only to
store the root node pointers to the trees.

How to Do’s

• represent a node by a structure

struct node
{ char letter;

struct node * left, * right; };

You can store, for example, 0 (the zero byte) for the interior (nonterminal) nodes into the
letter subfield, and the ASCII code for the leaf characters. In addition, you can store
also the left , right branch pointers subfields with NULL.

• Get each node memory by a separate malloc() call.

• Use getchar() to consume from the input. Do not store the whole line of input. You
do not need this. The tree data structure can be created while you pass over the input
character by character.

• Do use recursion. Both in input-to-data structure construction, the subtree search and the
print phase.

Copyright ©Göktürk Üçoluk 2009

90 MENDELIAN GENETICS

24 MENDELIAN GENETICS 2000 HOMEWORK 4

Introduction

This time we will be experimenting with Mendelian Genetics. Any inherited trait such as eye
color is referred to as phenotype. All phenotypes result from the presence of a specific gene
or combination of genes, the genotype. In this homework we will assume that a phenotype is
related to a single gene value, the allele. Each individual carries two (alleles) of each gene. But
only one of these two, is activated to produce the phenotype. We call that allele the observed
one and the other the hidden one.

Homozygous individuals carry two identical alleles. Heterozygous individuals carry two
different alleles. In case of dominance, one is called the dominant allele and the other the re-
cessive allele. A heterozygous individual will have a phenotype of its dominant allele. In this
homework it is also possible that there is no dominance defined among two different alleles.

In a sexual reproduction, for each trait, a random selection process takes place. One allele
will come from the mother’s alleles, the other from the father’s alleles. So, an unbiased draw
among the mother’s alleles for that trait is performed. This yields one of the alleles of the child.
Similarly, another draw among the father’s alleles will determine the other allele of the child
(for that trait). Now if there is a dominance relation defined for these alleles of the child, then
the child’s trait is determined according to the dominance rule. Otherwise the determination is
unbiased random.

Problem

You will be given a set of individuals and an experimentation lab in the form of a pre com-
piled code (object code). This object code accommodates information about individuals of some
population. This information includes

• count of individuals,

• what traits are present,

• what are the possible phenotypes for each trait,

• all dominance relations

• For each individual, what

– is the gender

– are the phenotypes

You will be able to retrieve this information by calling some functions. In addition to this you
will also be able to perform reproduction by crossing any two individuals, you chose, of oppo-
site sex (provided that you obey the non-incest rule defined below). Each reproduction will cost
you some points. This price will be announced later in the news group of this course. For this

Copyright ©Göktürk Üçoluk 2009

MENDELIAN GENETICS 91

moment you shall only concentrate on doing minimal number of reproductions. Each reproduc-
tion produces a new individual. Incest of the first and second kind are forbidden. That means
(parent,child), (sibling8,sibling), (uncle/aunt9,nephew/nice) marriages are disallowed.

Your job is to find out the hidden alleles for those individuals which id-number will be given
to you in the input line.

This homework differs from the previous ones. It involves lots of randomness. For some
inputs, probably, at a convenient stage, you will make random guesses. To compensate for this,
your program will be extensively tested with numerous test data.

You will be provided with a fully functional object code in which the population and the
properties of the individuals are fixed. By no means assume that this will be the population that
will be used for grading. Also do not waste your valuable time on reverse engineering it.

The path where the object codes (for various Unix systems of the department) are located

will be announced in the news group of the course. There will be no DOS or Windows ver-
sions!!

Specifications

• Individuals are represented by non-negative, consecutive integers. There will never be a
population greater than 100 individuals. The first individual has id-no 0. All individuals
are consecutively numbered. There is no gap in the numbering.

• Traits are represented by non-negative, consecutive integers (starting with zero), too. Though
your implementation shall not make a use of it, just for psychological reasons: you can
assume that there will be at most 50 traits. And a trait will have at most 40 possible phe-
notypes.

• Phenotypes are represented by strings which do not contain any whitespace.

• Any population will contain at least one individual of the opposite sex.

• The individuals of the initial population are not paternally/maternally related. So, repro-
duction among any of them is free. The non-incest rule defined, applies only starting with
their children.

• There is no catholic-marriage.

• There is no limitation on the sexual productivity of any individual, also the individuals
do not age. Also, they are productive the moment they are born.

• Reproduction is done by calling a function (described below). By calling that function
more than once (with the same arguments), you can create siblings. This can be done any
time (by this we mean after the first child, any of the parents can have other affairs!, and
then, again, produce another child).

• If there is a freedom in any response, the action of the object code is random, that means
exactly the run of the same code may produce different results. Your programs will be
tested this way.

8We define sibling as having at least one parent in common
9A sibling of any parent. Note that this definition excludes the wives/husbands of them

Copyright ©Göktürk Üçoluk 2009

92 MENDELIAN GENETICS

• main() is defined in the object code. You will be defining student main() exactly the
same way you would define main() . The main() which is defined in the object code will
be calling your student main() .

• Functions of the object code are as follows:

int get initial pool size(void)
returns the count of individuals in the initial pool.

int get trait count(void)
returns the count of traits.

phenotype *get phenotypes(int trait)
returns a pointer to the first (0 th) element of an array which has phenotype as
elements. This array will have get trait count() many elements. phenotype is
a user defined type and holds information about a single phenotype. It is defined as

typedef struct phenotype
{

char * name;
int dominance;

}
phenotype;

the name points to a string (something like "brown"), namely to the name of a phe-
notype. dominance is a an integer which tells you the dominance weight of this
phenotype. If another phenotype for this trait (some other array element) is "blue"
and has as dominance =1 where "brown" was =3 then if in an individual "brown"
and "blue" appears as alleles, then "brown" will be the observed and "blue" will
be the hidden one. If the weights are equal then the observed one is determined by
an unbiased random draw.

By going over this array you can obtain all phenotypes related to that trait . An
invalid value for trait will yield a NULLpointer return value.

individual *get individual(int n)
returns a pointer to a memory location which holds the information of the individual.
This pointer and the structure pointed by it is not unique for each individual. So, you
shall make a copy of the content which is pointed by that pointer if you will need
it later. On illegal n value NULL is returned. The user defined type individual is
defined as:

typedef struct individual
{

int id_number;
int gender;
char ** phenotype_names;

}
individual;

id number is the same as n.
gender is 1 for male, 2 for female.
phenotype names holds a pointer to the 0 th element of an array which has (char

Copyright ©Göktürk Üçoluk 2009

MENDELIAN GENETICS 93

*) as elements. The n th element of this array holds a pointer that points to a string,
namely to the phenotype of this individual for trait n. By going over this array you
can obtain all phenotype information related to that individual. Of course there is
no way to obtain both alleles for a trait of the individual (to find that out is the
whole purpose of this homework, anyway). What you will have in the individual
structure is always the allele that caused the observed property.

individual *make individual(int father, int mother)
will create a new individual by crossing father and mother . In case of an illegal
cross (e.g. a non existing individual as parent, or homosexual reproduction attempt)
the return value is the NULLpointer. If the cross is legal, then the observed properties
of him/her will be returned in a structure which is pointed by the return value. The
function will observe dominance relations. All random draws that it will perform (if
any) are unbiased.

• All data which are pointed by those pointers which are return values of the functions
defined, are volatile10. That means, a new function call may overwrite the previous infor-
mation. This includes all strings as well. So, you shall make copies, if you need them for
later use.

Furthermore, use this data read-only. Do not write to that area. This may have unforeseen
effects.

• There will be a time limit for execution of 60 sec.

I/O Specification, Compiling and Running

• Input is a single line of id-numbers, separated by one blank at least. You have to find the
hidden allele values for them.

• Output is n lines, where n is the count of id-numbers given in input. Each line corresponds
to one individual specified in the input. The line order has to be exactly the same order of
the input. Each line will have exactly the same number of strings, separated by one blank.
The strings are the hidden allele values of that individual in the trait order. So the first
string in the line is the hidden allele for the trait=0; the next is the the hidden allele for the
trait=1;. . . and so on.

• For compiling do:

– Copy the object code and the header file from the place specified in the news group
to your working directory with the names

mendelab.o
mendelab.h

– In order to let the compiler know about the functions that will come from the object
code, include a line into your program as:

#include "mendelab.h"

– Assuming your C source code is located in the file hw4.c you do the compilation by:

10not in terms of the volatile declaration of C

Copyright ©Göktürk Üçoluk 2009

94 MENDELIAN GENETICS

gcc -o hw4 hw4.c mendelab.o

This will produce an executable with the name hw4.

• To run the executable, we have provided a run-time option to control randomization:
if you run your program with no command line option as

hw4

then each run has the same randomization sequence. That means two runs of the same
executable will produce the same result. But if you run your program with a command
line option

hw4 -truerandom

each run will use a different randomization sequence and so two runs will (almost) never
be the same, as far as the randomization involved.

Interactive Programming Aid

We have provided an additional object code which you can use for the development phase of
your homework. It incorporates the functionality of a simple interactive environment, which
(when actitivated) waits for simple commands from stdin and outputs information about the
state of the population you are experimenting with.

The interactive state is activated by calling the function

interactive();

at any position of your program. You will be entering an interactive mode, which expects some
simple input from you. Commands in this environment start at the first column position and are
expressed by single letters, followed by one or more arguments (the count of arguments cannot
exceed 16):

P Prints information about individuals in the pool. There are two alternatives either you use
it as
P *
which prints all the population, or you enter the individuals that you are interested in, by
their id-number, following the letter P. Here is an example:
P 3 5 8
The response to the input of above is display like:

[3] female< ** +** > { ela}/ela {benekli}/benekli { kepce}/sivri { bodur}/bod ur {portlek}/portlek {uzunkuyruk}/uzunkuyruk
[5] male < ** +** > { siyah}/yesil { duz}/duz { kivrik}/kivrik { sirik}/kisa { portlek}/gocuk {topkuyruk}/kuyruksuz
[8] male < ** +** > { ela}/cakir {benekli}/benekli { sivri}/sivri { uzun}/ki sa { cekik}/gocuk {catalkuyruk}/kuyruksuz

Here <** +** > means that the father and mother information is unknown. If this field
would be < 9+12> this would mean that the father of this individual is 9 and the mother
is 12 . The following alleles in the line are the list of all trait values of that individual. As
an example,
{ siyah}/yesil
means that the surface allele (the one which is observable) is siyah and the hidden one
(the one that you are after!) is yesil .

Copyright ©Göktürk Üçoluk 2009

MENDELIAN GENETICS 95

T Prints information about traits. There are two alternatives either you use it as
T *
which prints all the traits, or you enter the traits that you are interested in, by their num-
bers, following the letter T. Entering nonexisting trait numbers may cause severe errors.

M Is used for doing reproduction. It is used as
Midfather idmother

like
M 5 3
If it is a valid crossing (noninsest, nonhomosexual) then the child is produced. In this
case the output is the observable (phenotypes) of the new individual. Otherwise you get
a warning which informs that the reproduction has not taken place.

? Is similar to Mbut does not produce a child. It is merely for asking for the validity of a
reproduction.

Q Quits the interactive() function. All the state changes that are done interactively are
persistent.

The interactive input routine is not bullet-proof for strange inputs. Do not temper with it.
Your programs will be evaluted with the interactive environment being removed. Also the

internal data structure may get modified. So, rely only on the functions described in the specifi-
cations.

Copyright ©Göktürk Üçoluk 2009

96 CHARACTER SEQUENCE

25 CHARACTER SEQUENCE ’01 HOMEWORK 1

Introduction

Welcome to the series of Ceng. 140 homeworks. You had a brief introduction to the stack concept
of Computer Science in the lectures. in this homework you are going to make use of it.

Problem

You will be given a sequence of characters of unknown length which can be expressed in the
BNF notation as:

〈sequence〉 ::= 〈sequence〉 〈sequence〉 |
[〈sequence〉] 〈number〉 |
〈letter〉

〈letter〉 ::= a | b | . . . | z
〈number〉 ::= 〈digit〉 | 〈digit〉 〈digit〉 | 〈digit〉 〈digit〉 〈digit〉
〈digit〉 ::= 0 | 1 . . . | 9

We define the transformation F on a sequence as

F(S1S2) = F(S1)F(S2)

F([S] n) = F(S)F(S) · · · F(S)
︸ ︷︷ ︸

n times
F(c) = c

where S, S1, S2 represents any 〈sequence〉, c represents any 〈letter〉 and n represents any 〈number〉.
A full reduction of a sequence means to apply the transformation F until no application is

possible.

Specifications

• You will be reading a single sequence from the standard input and output the full reduc-

tion sequence to the standard output.

• There is no limitation on the length of the sequence. Furthermore there is no way to know
about the length of the sequence until the end of the standard input, namely the end-of-file
is encountered.

• For any [S] n case: n ≥ 2 .

• You can assume that any full reduction ofF([S] n) will end in a sequence of 1000 〈letter〉s,
at most.

• Except the main() function you are not allowed to define functions.

Copyright ©Göktürk Üçoluk 2009

CHARACTER SEQUENCE 97

• You can define a single one dimension array of char type of size 1100 at most, if you do
so you have to name this array as bobby .

• Also, you are allowed to define a stack array of int type, of the size 350 at most, if you do
so you have to name this array as stack .

• No other array definitions are allowed. Furthermore, since it is not covered by the lectures
yet, the use of pointers, dynamic memory allocations, string functions are disallowed.
Even for input and output you are expected to use getchar() and putchar() .

• The use of #define is restricted to the purpose of naming constants only. The use of
#define with arguments is forbidden (this is also not covered in the lectures yet).

• You shall assume that the input is error free and fully comply with these specifications.

• Do not beautify your output by some messages, new lines, spaces, etc. The output is a
single 〈sequence〉 and nothing else. This has to be strictly followed since the evalution of
your program will be automated by means of an evaluation program.

Example

Input:

ali[[ba]3nab[al]2]2dedi

Output:

alibababanabalalbababanabalaldedi

Copyright ©Göktürk Üçoluk 2009

98 MASTERMIND

26 MASTERMIND ’01 HOMEWORK 2

Introduction

Mastermind is a game almost all of us used to play some time in our past. It is a paper and pencil
game played between two individuals. The game is symmetric and the idea is that one side
holds a (secret) number of a given number of digits and then the other side proposes numbers
in each turn to which s/he gets some well-specified response about the count of digits which
are exactly in place and the count of digits which exist in the secret number but are misplaced in
the proposal.

Problem

Your problem is to write a program which plays as the ’code breaker’ of mastermind. In other
words your program, by making ’intelligent’ proposals, will guess the number which was ’hold’
by the user (the code maker).

The rules of mastermind are as follows:

1. A digit is an integer in the range [0,D].

2. A valid number is defined to be an N digit number (N ≤ D) where the high-most (left-
most) digit cannot be 0 and any digit appears only once in the number.

3. The code maker chooses a valid number (we will call it the secret number).

4. (At each turn) the code breaker proposes a valid number. Turns are counted (Starting with
1).

5. As response to the proposal, the code maker provides two counts:

First count (Cexact): The count of digits of the proposed number that match in place of
the secret number.

Second count (Cmisplaced): The count of digits of the proposed number which do exist in
the secret number but are not in place.

6. A Cexact value of N stops the game and the turn-count is recorded; otherwise the game
continues from step (3).

Your program will be limited by some maximal turn-count (Maxturn) and some maximal
process-time (Maxtime) (in milliseconds). When these values are exceeded the evaluation pro-
gram will abort your program. These limiting figures will be made available to your run as a
part of the input data. A breach of these limits will result in an abortion of that run, and you will
get 0 (zero) points for that run.

Copyright ©Göktürk Üçoluk 2009

MASTERMIND 99

Specifications

• The first line of the standard input will contain 4 integers:
D N Maxturn Maxtime

The meaning of these parameters are explained in the preceding section. Furhermore,
D ≤ 9. The last one, (Maxtime) shall be read as a long , all the others are ok to be read as
int type. The line ends with an end-of-line.

• Your program is expected to output a single integer, namely your proposal for that turn,
followed by an end-of-line.

• In response to this, your program will be able to read two integers form the standart input,
seperated by one blank:
Cexact Cmisplaced

The line ends with an end-of-line.

• When you read in a Cexact value that is N that means you have found the secret number,
congratulations. . . Do not print anything, simply stop execution (for example by a call to
exit(0);). (Do not go into a loop with the expectation of a new problem).

• You can decide at any moment to quit, this will not cause any loss or gain of points. If you
decide to do so stop execution.

• You are expected to submit a one page written report that explains your solution approach
and algorithm. The due date is the same day as of the electronic submission, but the time
is 17:00.

Copyright ©Göktürk Üçoluk 2009

100 MASTERMIND

Grading

• Your program will be run with an extensive amount of different data. Each run will be
performed with a different data. This data will be the same for all students.

• You will receive a grade which is calculated on the base of your cummulative performance
with respect to the best performance of the class.

• Assume you found the secret code Nbingo times out of Ntotal runs. Your grade (out of 100)
will be calculated as:

Performanceyour

Performancebest

× 60 +
Nbingo

Ntotal

× 30 + 〈report & code quality〉

Here the Performance of an individual will be calculated as

∑

All runs

Maxturn + 1− Turn Count

Maxturn + 1

Turn Count is the turn count at which the secret code is found for that run. If a particular
run is quited or aborted due to the limitations, the Performance contribution for that run
is calculated as 0 (zero).

Hint

man clock

Copyright ©Göktürk Üçoluk 2009

BALANCING CHEMICAL EQUATIONS 101

27 BALANCING CHEMICAL EQUATIONS ’01 HOMEWORK 3

Introduction

The syntax of an unbalanced chemical reaction equation can be defined as:

〈reaction equation〉 ::= 〈side〉 -> 〈side〉
〈side〉 ::= 〈molecule〉 | 〈molecule〉 + 〈side〉

〈molecule〉 ::= 〈atom〉 | 〈atom〉 〈integer〉 | 〈complex molecule〉 | (〈complex molecule〉) 〈integer〉
〈complex molecule〉 ::= 〈molecule〉 〈molecule〉 mid 〈molecule〉 〈complex molecule〉

〈atom〉 ::= 〈an existing atom of the periodic chart〉

According to this syntactic definition:

CO N S T R U C T COMPLEX MOLECULE MOLECULE ATOM

Fe no yes yes

Gq no no no

Fe2 no yes no

FeFe yes yes no

CO yes yes yes

(C)O no no no

C(O)2 no no no

(CO) yes yes no

(COOH) yes yes no

(CO2H) yes yes no

(CO3H2S) yes yes no

((FeS)2CO)3 yes yes no

Please note that this definition in BNF notation is merely syntax related, nothing about semantics,
(ie. whether such a molecule can chemically exist or not) is considered.

We relax the syntax by allowing the existence of any number (possibly zero) of blanks in the
reaction equation provided that

• no blank exists in any construct that is also a 〈molecule〉

• no blank exists in the mid of the ”-> ” sign.

Balancing a reaction equation is to find the coefficients of each ’+’ separated molecule on
both sides (if there is only one molecule on one side then the coefficient of that molecule) so that
the count of atoms on both sides are equal (and this is true for for all the elements present in the
reaction equation).

Problem

You will be given a reaction in the above defined syntax in a single line. Here follows such an
example input line.

Copyright ©Göktürk Üçoluk 2009

102 BALANCING CHEMICAL EQUATIONS

H3PO4+(NH4)2MoO4 + HNO3 -> (NH4)3PO4(MoO3)12 + NH4NO3 + H2O

When this example is balanced the coefficients read as:

1H3PO4 + 12 (NH4)2MoO4 + 21HNO3 -> 1 (NH4)3PO4(MoO3)12 + 21NH4NO3 +12H2O
You are expected to produce the balancing coefficients:

1 12 21 1 21 12

Of course the set of balancing coefficients is not unique, because the multiplication off all the
elements of the set by a constant value will produce another set of balancing coefficients (for
that reaction equation). Therefore we introduce the following restriction:

• All of the coefficients will be positive integers with a GCD (Greatest Common Divisor) of
1.

Specifications

• You will be reading a single line from the standard input which is the reaction equation
(unbalanced).

• Your output is a single line of single space separated positive integers which are the bal-
ancing coefficients for the input. Their order is the molecule order of the input line (see
example above).

• The total count of molecules of both sides is ≤ 20.

• No molecule exceeds a length of 400 characters.

• Do not beautify your output. Do not print any additional messages, (pre/pro)ceeding
lines. Programs that produce non compliant outputs will be automatically graded as zero.

• You are expected to submit a one page written report that explains your solution approach
and algorithm. The due date is the same day as of the electronic submission, but the time
is 17:00.

• You can assume that the input is error free and complies with the input definition above.
Furthermore, it is guaranteed that there exists a unique solution. Also, no coefficient will
be greater then a 2 byte unsigned int .

• The chemical reactions that your program will be tested with may be fictive (non existing).
Also it is not guaranteed that they are correct as far as electron binding and exchange is
concerned. The molecules may at zero charge sum.

How to Do’s

• Though the lycee education puts it differently, the best way to do this job is to solve n-
1 linear equations in n unknowns (the coefficients).11 Each equation is due to an atom
involved in the reaction and represents the fact that the count of that specific atom on
both sides shall be equal. The restriction introduced at the end of the Problem section
above, serves to eliminate the last degree of freedom.

11Another reason for this is that conventional ad-hoc techniques (like redox) may not work in our cases
due to the last item of the Specification section.

Copyright ©Göktürk Üçoluk 2009

BALANCING CHEMICAL EQUATIONS 103

• This means getting involved in matrix inversion. Keep in mind that you have to work with
fractions and set up the matrix inversion algorithm based on fractions. You shall set up a
struct that holds the numerator and denominator and construct the four-operation alge-
bra of it (also consider the GCD removal). While doing so, take into account the overflow
possibilities. Do not choose a floating point representation for the matrix operations.

Copyright ©Göktürk Üçoluk 2009

104 PARTS INVENTORY (variant)

28 PARTS INVENTORY (variant) ’01 HOMEWORK 4

Introduction

In this homework the purpose is to construct a parts inventory.
Suppose we work in a bicycle factory, where it is necessary to keep an inventory of bicycle

parts. If we want to build a bicycle, we need to know what is the total cost of the parts. Each
part of the bicycle may have sub-parts, for example each wheel has some spokes, a rim and
a hub. Furthermore, the hub can consist of an axle and some gears. Let us consider a tree-
structured database that will keep the information of which parts are required to build a bicycle
(or any other composite object). There are two kinds of parts that we use to build our bicycle
(or generally any such composite object). These are assemblies and basic parts. Each assembly
consists of a quantity of basic parts and (may be) a quantity of other assemblies. Since it is
possible to calculate the price of any composite part, only the unit price for the basic parts are
provided. Below you see such a tree:

WHEEL FRAME

AXLE

NUTBOLT

SPOKERIM HUB REARFRAME FRONTFRAME

FORK

25.0

BIKE

2 1

HANDLE

1

11 11

5

1

2 1

7

2

GEAR

60.0 120.0

0.1 0.15

175.0

10.022.5

In this case, for example, a gear has a unit price of 25.0 and you will need 2 such gears to make
a hub.

Copyright ©Göktürk Üçoluk 2009

PARTS INVENTORY (variant) 105

Problem

Your program will read the tree information from the standard input. A possible input that
would correspond to the tree example of above would be (see below text for input specifica-
tions):

BIKE(2 * WHEEL(RIM[60.0],
SPOKE[120.],
HUB(2* GEAR[25.],AXLE(5 * BOLT[0.1], 7 * NUT[.15]))),

FRAME(REARFRAME [175.00],
1* FRONTFRAME (FORK[22.5] ,2 * HANDLE[10.])))

(All intendations, spaces and line breakings are optional. The same input could be provided in a single
line without any of them inserted)

The expected output is a single floating point:

780.6

which is the price to build a BIKE.

The input line syntax defined in BNF notation is as follows:

〈part〉 ::= 〈composite part〉 | 〈basic part〉
〈composite part〉 ::= 〈name〉 | 〈name〉 (〈list of items〉)

〈basic part〉 ::= 〈name〉 | 〈name〉 [〈price〉]
〈item〉 ::= 〈part〉 | 〈quantity〉 * 〈part〉

〈list of items〉 ::= 〈item〉 | 〈item〉 , 〈list of items〉
〈name〉 ::= 〈uppercase letter sequence of maximal length 20〉

〈quantity〉 ::= 〈positive integer〉
〈price〉 ::= 〈floating point〉

We relax the syntax by allowing the existence of any number (possibly zero) of blanks or end-
of-lines in the input provided that they do not exists in any name, quantity or price.

The data structure that your program shall construct on-the-fly is given below. As you see,
no constant sized memory structures are used at all. The only assumption that you are allowed
to make is that no numerical overflow will occur neither at the input nor in the computations.

Furthermore, things can be more complex then in the example. At any stage, a part (either
basic or composite) which is defined at another place of the input can be used (refereed to). Of
course if that is the case no description of it will follow the point where it is used. The point
of such a usage is definitely not fixed. What we mean is that it is quite possible that some part
which definition is due to come (but not read in yet) can be refereed.

Let us give an example: Let us assume that in the previous example WHEEL itself is making
use two AXLEs and FRONTFRAME is making use of one AXLE (attention: HUB is still making
use one AXLE, nothing is changed there) then the input line would read as:

Copyright ©Göktürk Üçoluk 2009

106 PARTS INVENTORY (variant)

"BIKE"

1 2

"REARFRAME"

"NUT"

"RIM"

"SPOKE"

"HANDLE"

"GEAR"

"FORK"

"WHEEL"

"FRAME"

"HUB"

"AXLE"

"FRONTFRAME"

1

1

1

1

1

1

1 1 1

1

1 1

1 1

2

5 7

0

0

0

0
0

0

0

0

120.0

60.0

25.0

0.1

0.15

10.0

22.5

175.0

"BOLT"

BIKE(2 * WHEEL(RIM[60.0],
2* AXLE,
SPOKE[120.],
HUB(2* GEAR[25.],AXLE(5 * BOLT[0.1], 7 * NUT[.15]))),

FRAME(REARFRAME [175.00],
1* FRONTFRAME (FORK[22.5] ,AXLE, 2 * HANDLE[10.])))

Specifications

• The input is a single part which will be read from the standard input.

• The output is a single computed price of that part which will be printed to the standard
output.

• As the example displays very clearly an omitted quantity figure means that it is 1.

• You can assume that the input is error free and complies with the input definition above.
If a multiple usage of a part exists then it is guaranteed that exactly at one and only one
point of these usages that part is defined (in terms of its sub parts or price).

Copyright ©Göktürk Üçoluk 2009

PARTS INVENTORY (variant) 107

Furthermore, it is guaranteed that no part X is making using a part that uses X. In other
words there are no cycles in the structure (For your information: if such cycles would exist
the resulting structure would not be called as a tree at all).

• No quantity figure in the input line will exceed 100.

• No total quantity of any (sub) part in any part will exceed the size of a 4-byte long .

• You shall use double for all floating point data.

• No numerical information is provided about an upper limit for count of items on a list of
items.

• No numerical information is provided about the depth of the tree. Your program shall not
limiting numerical assumptions on these. Of course, due to the nature of the computer
infrastructure there are some practical limits.

Hints and Instructions

• You shall make extensive use of the functions defined in string.h . Especially: the
str *() functions and the *to *() functions.

• If you do any realloc() be careful about consequences. (remember the lecture).

• DO NOT even think of storing the input lines first and then process them all together. This
is not possible. The program must have a one-pass-algorithm.

• Use RECURSION.

• For the node representation: Either use unions or define two different structures and per-
form your own casting. If you are not very confident prefer unions.

• Create only ONE node per part. ie. do not create more then one node if a part is multi
used. (What are pointers for, any way?). In the second example above (the example in
the box), AXLE is multi used. The structure representing AXLE will still be unique. But
There will be pointers pointing to it from the structures representing WHEEL, HUB and
FRONTFRAME.

• Since your programs are graded using some automated i/o DO NOT beautify the form of
the output. Do it exactly as it is shown in the example.

Copyright ©Göktürk Üçoluk 2009

108 BUYING BY INSTALMENT

29 BUYING BY INSTALMENT ’02 HOMEWORK 1

Introduction

Welcome to the series of Ceng. 140 homeworks. It is quite common, in these days, to buy some
good on the base of monthly instalments. Let us assume the price part that you do not pay in
advance, namely the loan is (A). Furthermore let us assume that you have agreed on a payment
which will last (n) months. Now what is the mathematical method that determines the amount
of montly payment (x). There is one more ingradient in this problem which is the montly interest
that you have to pay for the amount that was on loan for each month, we will call this figure (f).

Now let us try to derive the equation which combines all this. For the ease of the calculation
we define ξ = (1 + f)

The moment you sign the agreement: Your debt is A.

At the end of the first month: Your debt has grown to ξA. You walk into the shop, you pay
your montly instalment, which is x, and now the debt, you owe, is reduced to ξA−x. You
go back home and enjoy life for one month more.

At the end of the second month: Your debt has grown to ξ × (ξA− x). And you pay again the
amount of x. So, your dept is now ξ × (ξA− x)− x which can be rewritten as
ξ2A− x(ξ + 1)

At the end of the third month: Your debt has grown again by multiplying it by ξ, again you
pay x and (after rearrangement) your dept boils down to:
ξ3A− x(ξ2 + ξ + 1)

· · · · · ·

At the end of the nth month: Generalizing, we can easily tell that our debt is:

ξnA− x(ξn−1 + ξn−2 + · · ·+ ξ + 1)

which can neatly be written as:

ξn − x
n−1∑

i=0

ξi

Well, but at this point in time my debt should have been reduced to 0 (zero). That was the
whole arrangement.

So, we have our equation:

ξn − x
n−1∑

i=0

ξi = 0

The sum in here computes to (see your high school math books)

n−1∑

i=0

ξi =
1− ξn

1− ξ

Copyright ©Göktürk Üçoluk 2009

BUYING BY INSTALMENT 109

So we have

ξn − x
1− ξn

1− ξ
= 0

Doing the rearrangement we arrive at the following equation:

ξn+1 −
(

1 +
x

A

)

ξn +
x

A
= 0

Specifications

Your problem is to solve numerically this equation, for one unknown, provided that all the
others are given. A is not subject to this, it will always be provided. So, you will be writing a
program that will solve the equation for the following possibilities:

1. n, x are given, f is the unknown.

2. n, f are given, x is the unknown.

3. x, f are givem, n is the unknown.

Remember that ξ = (1 + f).

Specifications

• The first line contains two numbers, one floating point in the range [100, 1000000], the
value of A; and then an integer that corresponds to the question type: one of (1,2,3).

• All values are realistic so no negative values of f , n and x is possible. Furthermore if f is
asked for (type 1) the outcome is in the range (0, 1].

• The second line is holding

– for type 1 question: n and x (seperated by at least one blank).

– for type 2 question: n and f (seperated by at least one blank).

– for type 3 question: x and f (seperated by at least one blank).

n is an integer all others are floating points. Any given x value is in the range [100, 1000000]
but an x that you calculate can be greater than this.

• Your output is a single line of a pure number (no remarks please) which is the unknown.

• Do not beautify your output by some messages, new lines, spaces, etc. The output is a
single 〈sequence〉 and nothing else. This has to be strictly followed since the evalution of
your program will be automated by means of an evaluation program.

• You shall assume that the input is error free and fully comply with these specifications.

Copyright ©Göktürk Üçoluk 2009

110 PAYMENT PLANING BY SIMULATED ANNEALING

30 PAYMENT PLANING BY SIMULATED ANNEALING
’02 HOMEWORK 2

Introduction

A large group of Computer Science (CS) problems are problems in which a solution to a well
defined problem is searched for. We call such tasks search problems. Finding a solution to a
search problem means to determining the value of a set of parameters. The kind of parameters
may vary from problem to problem. So parameters may be real numbers, some integers, some
discrete identification of some values (like colors, gender, etc). It is also quote possible that the
parameters are heterogenous, that means they are not of the same type.

There are various search techniques to tackle these problems.

The first is to consult mathematics for a analytic solution. This, if exists is obtainable by solving
some formula. Sometimes the solution does not exist in closed form, so approximation
techniques is used. The area of Numerical Analysis is the battle field of this approach.

The second that can come into ones minds is exhaustive search, the search we call in which
we try systematically all possibilities. Normally, a search problem is too hard to find a
solution by trying out all possibilities (all possibilities are named as the search space in
CS).

The third is a guided tour in the search space. Here at every step you have some candidate so-
lutions, and by a prescription (we call it the search algorithm), looking at the candidate(s)
you decide either

• to stop, and be satisfied with what you have got,

• or, continue with some new candidates which you pick from the search space, ac-
cording to your search algorithm, by making use of the candidates you have in your
hand.

This last category is full of detailed techniques. Your first homework was an example of this
where you had a single candidate in your hand, and at each step you could have picked a better
one by a binary search algorithm. This technique was applicable because

• there was a single solution,

• the search space was made up of values of a monotonic increasing function (for the given
domain).

This time, life will not be so easy. The problem will be defined under the title Problem, but
before considering it, it is worth to have some introduction to two new search technique (that fall
into the third category of above). The following section12 explains Hillclimbing and Simulated
Annealing running through an example. To make your life easy about understanding it here is
the explanation of some terminology:

12This section is in great extend pp. 26-29 of the book Genetic Algorithms+Data Structures=Evolution
Programs by Zbigniew Michalewicz
To the student: The book has no other relevance to the problem that you received in this homework, so
don’t spend your energy by trying to locate a copy of the book with the intention of finding some ‘hints’.

Copyright ©Göktürk Üçoluk 2009

PAYMENT PLANING BY SIMULATED ANNEALING 111

Objective function: It is the formulation of the problem to be solved as a function that quanti-
tatively describes the quality of a solution candidate.

Optimization task: To find the best solution.

Optimum The best solution. Often we speak of a global optimum and some local optimum.
The global optimum is the best solution all over the search space. A local optimum is the
best solution in the neighborhood of that solution. To define a neighborhood you need
to have a measure in the space. So, you can talk about the distance of two members of
the solution space. This measure is imposed by you, having a feeling of the ‘likeliness’ of
two candidate solutions. It is a measure where small changes (perturbations) to solution
candidates yield in small changes in measure.

Hill climbing: A primitive search technique in which you have a solution candidate at each
moment, and to improve it, you search the neighborhood of the candidate for a better
solution (a solution that makes you more happy when you plug it in the objective function
than the candidate to hand). You proceed to the best of these in the ‘neighborhood’, dump
your old candidate and take that one to be the current candidate.

Simulated annealing: Read the following item about temperature. Still unsatisfied? Proceed to
the next section.

Temperature: Simulated annealing as a computational process is patterned after the physical
process of annealing in which physical substances such as metals are melted (i.e., raised
to high energy levels) and then gradually cooled until some solid state is reached. The
goal of this process is to produce a minimal-energy final state. Thus this process is one of
valley descending in which the objective function is the energy level. Physical substances
usually move from higher energy configurations to lower ones, so the valley descending
occurs naturally. But there is some probability that a transition to a higher energy state
will occur. This probability is given by the function

probability = e−
∆E
kT

where ∆E is the positive change in the energy level, T is the temperature, and k is Boltz-
mann’s constant. Thus, in the physical valley descending that occurs during annealing,
the probability of a large uphill move is lower than the probability of a small one. Also, the
probability that an uphill move will be made decreases as the temperature decreases. Thus
such moves are more likely during the beginning of the process when the temperature is
high, and they become less likely at the end as the temperature becomes lower. One way
to characterize this process is that downhill moves are allowed anytime. Large upward
moves may occur early on, but as the process progresses, only relatively small upward
moves are allowed until finally the process converges to a local minimum configuration.

The rate at which the system is cooled is called the annealing schedule. Physical anneal-
ing processes are very sensitive to the annealing schedule. If cooling occurs too rapidly,
stable regions of high energy will form. In other words, a local but not global minimum
is reached. If, however, a slower schedule is used, a uniform crystalline structure, which
corresponds to a global minimum, is more likely to develop. But, if the schedule is too
slow, time is wasted. At high temperatures, where essentially random motion is allowed,
nothing useful happens. At low temperatures a lot of time may be wasted after the final

Copyright ©Göktürk Üçoluk 2009

112 PAYMENT PLANING BY SIMULATED ANNEALING

structure has already been formed. The optimal annealing schedule for each particular
annealing problem must usually be discovered empirically.

These properties of physical annealing can be used to define an analogous process of sim-
ulated annealing, which can be used (although not always effectively) whenever simple
hill climbing can be used. In this analogous process, ∆E is generalized so that it repre-
sents not specifically the change in energy but more generally, the change in the value of
the objective function, whatever it is. The analogy for kT is slightly less straightforward.
In the physical process, temperature is a well-defined notion, measured in standard units.
The variable k describes the correspondence between the units of temperature and the
units of energy. Since, in the analogous process, the units for both E and T are artificial, it
makes sense to incorporate k into T selecting values for T that produce desirable behavior
on the part of the algorithm. Thus we use the revised probability formula

probability = e−
∆E
T

Where ∆E is nothing else but f(vc)−f(vn), namely the difference of the current candidate
objective function value and the new candidate’s.

Thermal equilibrium: Low T value, where the system no more excited to hop around.

Copyright ©Göktürk Üçoluk 2009

PAYMENT PLANING BY SIMULATED ANNEALING 113

Hillclimbing, Simulated Annealing

The search space is a set of binary strings v of the length 30. The objective function f to be
maximized is given as

f(v) = |11 · one(v)− 150|,
where the function one(v) returns the number of 1s in the string v. For example, the following
three strings

v1 = (110110101110101111111011011011),

v2 = (111000100100110111001010100011),

v3 = (000010000011001000000010001000),

would evaluate to

f(v1) = |11 · 22− 150| = 92,

f(v2) = |11 · 15− 150| = 15,

f(v3) = |11 · 6− 150| = 84,

(one(v1) = 22, one(v2) = 15, and one(v3) = 6).
The function f is linear and does not provide any challenge as an optimization task. We use it

only to illustrate the ideas behind these two algorithms. However, the interesting characteristic
of the function f is that it has one global maximum for

vg = (111111111111111111111111111111),

f(vg) = |11 · 30− 150| = 180, and one local maximum for

vl = (000000000000000000000000000000),

f(vl) = |11 · 0− 150| = 150.
There are a few versions of hillclimbing algorithms. They differ in the way a new string is

selected for comparison with the current string. One version of a simple (iterated) hillclimbing
algorithm (MAX iterations) is given below (steepest ascent hillclimbing). Initially, all 30 neigh-
bors are considered, and the one vn which returns the largest value f(vn) is selected to compete
with the current string vc. If f(vc) < f(vn), then the new string becomes the current string. Oth-
erwise, no local improvement is possible: the algorithm has reached (local or global) optimum
local = TRUE. In a such case, the next iteration t ← t + 1 of the algorithm is executed with a
new current string selected at random.

It is interesting to note that the success or failure of the single iteration of the above hill-
climber algorithm (i.e., return of the global or local optimum) is determined by the starting
string (randomly selected) . It is clear that if the starting string has thirteen 1s or less, the al-
gorithm will always terminate in the local optimum (failure). The reason is that a string with
thirteen 1s returns a value 7 of the objective function; and any single-step improvement towards
the global optimum, i.e., increase the number of is to fourteen, decreases the value of the objec-
tive function to 4. On the other hand, any decrease of the number of 1s would increase the value
of the function: a string with twelve 1s yields a value of 18, a string with eleven 1s yields a value
of 29, etc. This would push the search in the “wrong” direction, towards the local maximum.

For problems with many local optima, the chances of hitting the optimum (in a single itera-
tion) are slim.

Copyright ©Göktürk Üçoluk 2009

114 PAYMENT PLANING BY SIMULATED ANNEALING

iterated hillclimber()← {
t← 0
repeat

local ← FALSE
select a current string vc at random
evaluate vc

repeat
select 30 new strings in the neighborhood of vc

by flipping single bits of vc

select the string vn from the set of new strings
with the largest value of objective function f

if f(vc) < f(vn)
then vc ← vn

else local← TRUE
until local
t← t + 1

until t = MAX
}

The structure of the simulated annealing procedure is given below.

simulated annealing()← {
t← 0
initialize temperature T
select a current string vc at random
evaluate vc

repeat
repeat

select a new string vn at random
in the neighborhood of vc

by flipping a single bit of vc

if f(vc) < f(vn)
then vc ← vn

else if random[0, 1) < exp{(f(vn)− f(vc))/T}
then vc ← vn

until (termination condition)
T ← g(T, t)
t← t + 1

until (stop-criterion)
}

The function random[0, 1) returns a random number from the range random[0, 1). The
(termination-condition) checks whether ‘thermal equilibrium’ is reached, i.e., whether the prob-
ability distribution of the selected new strings approaches the Boltzmann distribution. However,
in some implementations this repeat loop is executed just k times (k is an additional parameter
of the method).

The temperature T is lowered in steps (g(T, t) < T for all t). The algorithm terminates for
some small value of T : the (stop-criterion) checks whether the system is ‘frozen’, i.e., virtually

Copyright ©Göktürk Üçoluk 2009

PAYMENT PLANING BY SIMULATED ANNEALING 115

no changes are accepted anymore:

As mentioned earlier, the simulated annealing algorithm can escape optima. Let us consider
a string

v4 = (111000000100110111001010100000),

with twelve 1s, which evaluates to f(v4) = |11 · 12− 150| = 18. For v4 as the starting string, the
hillclimbing algorithm (as discussed earlier) would approach the local maximum

vl = (000000000000000000000000000000),

since any string with thirteen 1s (i.e., a step ‘towards’ the global optimum) evaluates to 7 (less
than 18). On the other hand, the simulated annealing algorithm would accept a string with
thirteen 1s as a new current string with probability

p = exp{(f(vn)− f(vc))/T} = exp{(7− 18)/T},

which for some temperature, say T = 20, gives

p = e−
11

20 = 0.57695

i.e., the chances for acceptance are better than 50% .

Problem

Remember the first homework. Life was easy in those days (which were not so far away). This
time our hero(ine) is a person that has his/her living based on a salary. Also has a burning desire
to do shopping. Being fascinated of a new installment mechanism that s/he reads in some shop
display, s/he reads the announcement, again and again:

• The loan can be paid back in n months, where n is in the range of [3-36].

• It is up to you to make up your pay-back plan. The only restriction is that for any month
except the first, your installment has to be in the range of ±50% of your previous month’s
installment. You are free to choose any value for the first month’s installment.

• Each month the debt you owe will be increased by a factor of ξ (yes the good old ξ).

• Come on! you are well again, you are well!

S/he understands the first three but the fourth makes no sense (though looks somewhat famil-
iar).

Being happy like a child, s/he goes home and sits down for calculation. The country s/he
lives in is extremely stable. All changes of the forthcoming 3 years period is predictable, and
done so by financial experts. So, the monthly bank interests are known for the next 3 years. Due
to some ‘Banker’s Protection Law’ deposit accounts may last only one month.

Now, our hero(ine) tries to figure out a pay-plan so that when all what is left over from
paying his/her installment is put on a deposit account (for one month, according to the law)
and gains some interest with the interest rate know for that month, at the end of n months the
saving (in the bank) is maximized. Cute, eh?

Copyright ©Göktürk Üçoluk 2009

116 PAYMENT PLANING BY SIMULATED ANNEALING

Your job is to write a program that will take as input n, the monthly bank interests for all
the n months, the amount of the loan A, the constant interest rate for the loan f 13, and output n
numbers, namely the installments of each month.

As you are very eager to get into the professional life, we will simulate it for you, by:

• If your plan is not working, in other words if is not balanced, or proper, ie. at any stage
(month) you attempt to pay more than you have in bank, or if you brake the ±50% rule,
we will fry you. You get zero.

• If you have a ‘working’ plan you receive 40 points, then what adds up on this (maximum
60 points) is proportional to your performance, compared to your classmates. According
to the following formula:

P = 60× SavingY our program − SavingWorst program

SavingBest program − SavingWorst program

Where Worst program is the program of one of your classmates that produces a work-
ing plan but the saving is the least among all working plans of the class. Similarly,
Best program is the one that has the highest saving in the class.

Example

Let us assume the input was as follows:

1000000.0 6 500000.0 0.08
0.02 0.09 0.08 0.07 0.05 0.01

Furthermore, assuming that the following is a solution you came up with: (By no means the
following is the best plan, it is just an example for a ’working plan’)

200000. 150000. 190000.0 260000.0 240000.0 287126.083584
You can assume that you pay a month’s installment just the last moment of that month (through
internet banking) [we will call the moment just before the payment t1 and the moment after the
payment t2]. And then just a few seconds later it is the first day of the next month an you bank
account is automatically receiving your salary for the starting month [this moment in time we
mark as t3]. Furthermore, you can assume that your purchase was exactly done at a t3 timemark.
Now the calculation is done as the following:

Months after purchase: 1

Bank is holding@t1: 500000 × 1.02 = 510000

Debt@t1: 1000000 × 1.08 = 1080000

You pay: 200000

Bank holding@t2: 510000 − 200000 = 310000

Bank holding@t3: 310000 + 500000 = 810000

Debt remaining@t3: 1080000 − 200000 = 880000

13This f has nothing to do with the f() of the previous section.

Copyright ©Göktürk Üçoluk 2009

PAYMENT PLANING BY SIMULATED ANNEALING 117

Months after purchase: 2

Bank is holding@t1: 810000 × 1.09 = 882900

Debt@t1: 880000 × 1.08 = 950400

You pay: 150000

Bank holding@t2: 882900 − 150000 = 732900

Bank holding@t3: 732900 + 500000 = 1232900

Debt remaining@t3: 950400 − 150000 = 800400

Months after purchase: 3

Bank is holding@t1: 1232900 × 1.08 = 1331532

Debt@t1: 800400 × 1.08 = 864432

You pay: 190000

Bank holding@t2: 1331532 − 190000 = 1141532

Bank holding@t3: 1141532 + 500000 = 1641532

Debt remaining@t3: 864432 − 190000 = 674432

Months after purchase: 4

Bank is holding@t1: 1641532 × 1.07 = 1756439.24

Debt@t1: 674432 × 1.08 = 728386.56

You pay: 260000

Bank holding@t2: 1756439.24 − 260000 = 1496439.24

Bank holding@t3: 1496439.24 + 500000 = 1996439.24

Debt remaining@t3: 728386.56 − 260000 = 468386.56

Months after purchase: 5

Bank is holding@t1: 1996439.24 × 1.05 = 2096261.202

Debt@t1: 468386.56 × 1.08 = 505857.4848

You pay: 240000

Bank holding@t2: 2096261.202 − 240000 = 1856261.202

Copyright ©Göktürk Üçoluk 2009

118 PAYMENT PLANING BY SIMULATED ANNEALING

Bank holding@t3: 1856261.202 + 500000 = 2356261.202

Debt remaining@t3: 505857.4848 − 240000 = 265857.4848

Months after purchase: 6

Bank is holding@t1: 2356261.202 × 1.01 = 2379823.81402

Debt@t1: 265857.4848 × 1.08 = 287126.083584

You pay: 287126.083584

Bank holding@t2: 2379823.81402 − 287126.083584 = 2092697.730436

Debt remaining@t3: 0

If you provide this plan you are claiming that the last Bank holding@t2 figure is maximal
(as far as you could have found) with this plan. It is this figure that will be used for grading.

Specifications

• Your input consists of 2 lines, and your output consists of a single line described below.

• The first input line contains four numbers

1st number a floating point in the range [100, 1000000], the value of A;

2nd number an integer in the range [3− 36], the value of n;

3rd number a floating point in the range [100, 1000000], the salary of our hero(ine);

4th number a floating point in the range [0.001, 2.0], the value of f , which the monthly
(fixed) interest rate your loan is subject to. Remember that ξ = 1 + f .

The second input line is holding n number of floating points, namely the bank interest
rates fi for the first, second, . . . nth month. fi is in the range [0.001,2.0]

• The output line shall contain n floating points in the range [0, 50000000], which are the
installments you decided to pay for the first, second, . . . nth month.

• You are guaranteed that at least one working plan exists.

• Precision announcements for the first homework are valid for this one also.

• A time limit will be given that restricts the execution time. This limit will be announced
in due time, on the ‘tin’ group.

• You are expected to solve the problem by Simulated Annealing. Fine trimmings on the
algorithm is allowed. Your main effort shall go into determining the cooling process (how
T is going to change over iterations), and how you define the neighborhood of a candidate
solution.

Copyright ©Göktürk Üçoluk 2009

PAYMENT PLANING BY SIMULATED ANNEALING 119

• You can make use of the random() function, which prototype is defined in stdlib.h .
To understand the details do : man random.

For your convenience here are two functions that you may use, based on these library
functions.

int random1(int n)
{

return (random()%n);
}

void randomize(void)
{

srandom((int) (time(NULL)));
}

random1(100) may return random integer values in the range [0, 99]. randomize()
initialize the seed of the random sequence to some arbitrary value (fetched from the real
time clock of the system). If you do not randomize() the sequence that you will obtain
by successive calls to random1() , will be the same.

• Do not beautify your output by some messages, new lines, spaces, etc. The output is
specified above and is nothing else. This as to be strictly followed since the evaluation of
your program will be automated by means of an evaluation program.

• You shall assume that the input is error free and fully comply with these specifications.

Copyright ©Göktürk Üçoluk 2009

120 LOGIC CIRCUIT SIMULATION

31 LOGIC CIRCUIT SIMULATION ’02 HOMEWORK 3

Introduction

This is a replica of the last homework of Ceng 111, this year. So, we expect that you feel some
comfort.

The solution can be done in two approaches. We are forcing, though, one of it (the easer
approach). You will find a rough analysis in the How-to-do section.

Problem

In this homework you will be writing a digital circuit simulator for the i/o (input/output) level.
the digital circuit elements that you will be dealing with are forming a small subset of the real
world. Furthermore, restrictions are imposed to ease your job.

The circuits that you will be dealing with can contain four types of components:

• AND gate

• OR gate

• NOT gate

• τ -flip-flop

Their schematic representations as well as the functions that describe their actions are expressed
as truth tables below:

p

r

q

AND

p q r

0 0 0
0 1 0
1 0 0
1 1 1

r

p

q

OR

p q r

0 0 0
0 1 1
1 0 1
1 1 1

rp

NOT

p r

0 1
1 0

p r

−FLIP−FLOPT

p former r r

0 0 0
0 1 1
1 0 1
1 1 0

The τ -flip-flop has a hidden input which is invoked at the start of each experiment. So, that
all τ -flip-flops start a run with their former output state set to 0.

Below you see a circuit example:

p

q

s

r

Copyright ©Göktürk Üçoluk 2009

LOGIC CIRCUIT SIMULATION 121

We name a set of input values of a circuit as an input vector for the circuit. The input vector
has as many elements as the circuit has inputs. A run of the simulator is defined as a sequence
of input vectors being presented to the inputs.

The purpose of the simulation is to determine what the output of the circuit (in the example
r) is after a run.

Note that this output value is not only a function of the last element of the sequence (the last
presented input vector). Because the behavior of a τ -flip-flop is depending on its former state
of its output. So the circuit exhibits a memory effect. Hence, even if the same input vector is
presented to the input for the second time, it is quite possible that the output may not be the
same.

Consider the circuit above. Assume the circuit is presented with two input vectors, which
are of the form (p, q, s) and are (0,1,0) and (0,1,1), in sequence. We call this a single run.

The p value of the first input, a 0, will be inverted by the not gate to a 1 and fed into the
τ -flip-flop. Since at the start of a run all τ -flip-flops are set to have a former output state of 0,
according to the third row of the truth table, the output of that τ -flip-flop will be 1. This 1 is
then fed into the and gate, and so on.

The p value of the second input is again a 0. Again it will be inverted by the not gate that is
connected to the p input. This 1 will enter the τ -flip-flop as it was in the previous case. But this
time the former output state is not 0 but is 1. So according to the fourth line of the truth table
the output of that τ -flip-flop will be 0 this time. This time this 0 is fed into the and gate which is
different then the previous case.

Specifications

• The circuit is guaranteed to be of combinatorial type. That means if you consider a one
directional flow of information from the inputs to the output of each circuit element, no
loop is formed in this information flow in the whole circuit.

• You are expected to write a program that takes input from standard input and produces
either 0 or 1 as the result on the standard output (as explained above). The input lines are
as follows:

First line: The input variables.
For the example above: p q s

Second line: A sexpr like list expression that describes the circuit. 14

For the example circuit above this would be:

(or(and(tflipflop (not p)) zort)(tflipflop (not(or (zort (not q)) s))))

There is no limitation on the input line length.

Remaining lines: Each line holds an input vector where the first of these lines is the
input vector that is first to be applied. There is no limitation on the count of such
lines. Practically it will terminate by the detection of the EOF.
A possible example (with two input vectors) for the circuit above:

0 1 0
0 1 1

14Space in an sexpr is only required between two atoms, furthermore, the use of more then one adjacent
spaces is equal to one space.

Copyright ©Göktürk Üçoluk 2009

122 LOGIC CIRCUIT SIMULATION

Note that there are no parenthesis around the vectors.

Here the zort word is used to label an output of some circuit element. The form of
usage and definition is as follows:
A usage of a label (zort in the example) in an input position of a circuit element
means that there is a wire connection from this point to the point of a circuit element
that appears as the second element of a list which has as the first element the same
label.
For the example circuit above: The input of the and gate is such a connection. It is
labeled with the label zort. This label appears also as a part of the sexpr as (zort
(not q)). This all together, means that there is a wire connection from the circuit
output of (not q) to the second input of the and gate.

It is possible that the same label is used at several input positions (meaning that all
those inputs are connected by wire and share the same signal data). But, it is not
possible that such an label refers to more than one outputs. In other words such an
label will show up exactly once as the first member of a list. Note that these labels
are not given prior to the sexpr line. So, it is a part of your job to find them out.

• On any path of the signal flow that connects any input to the output you are guaranteed
to have at most one τ -flip-flop.

• The output of the program with the above mentioned example inputs will be 1.

How-to-Do

• A simple approach is to store only the topology (structure) of the circuit. That means
leaving off the simulation values of each element of the circuit (do not create positions to
store these values in) and calculate the behavior of the circuit by a function, taking the
topology and the input vectors as input. This technique will work provided that we pay
attention to (handle) the ‘memory effect’ of the flip-flop.

Though unions are usable for the implementation, we advise you not to do so and define
the following structures. Then you use type casting to achieve the union-like functionality.
So you benefit by having different structure elements of different sizes and not a single
entity (the union) of the maximal size of all possible elements.

typedef struct {char kind; void * fed_by;} not;
typedef struct {char kind; void * fed_by_1, * fed_by_2;} binary_operator;
typedef struct {char kind; void * fed_by; char former_state} tflipflop;
typedef struct {char kind; char value;} input;

#define NOT 1
#define OR 2
#define AND 3
#define TFLIPFLOP 4
#define INPUT 5

#define KIND(p) (((not *) p) -> kind)
#define NOT_FED_BY(p) (((not *) p) -> fed_by)

Copyright ©Göktürk Üçoluk 2009

LOGIC CIRCUIT SIMULATION 123

#define BINOP_FED_BY_1(p) (((binary_operator *) p) -> fed_by_1)
#define BINOP_FED_BY_2(p) (((binary_operator *) p) -> fed_by_2)
#define TFLIPFLOP_FED_BY(p) (((tflipflop *) p) -> fed_by)
#define TFLIPFLOP_FORMER_STATE(p) (((tflipflop *) p) -> former_state)
#define INPUT(p) (((input *) p) -> value)

2 1

1 2 1
4

4
3

5

5

5

0

Pointer to the
constructed data structure

Pointer to
the array of input
variables

0

Above you see the data structure that corresponds to the example, just after it is con-
structed. As you might have understood already, the structure binary operator is used
to store both the and and or elements’ information. The difference is in the value stored of
the kind subfield (a value of 2 means and, 3 means or)15.

• Write a parsing function that does a one pass over the sexpr and constructs the data struc-
ture. The only problem here is to deal with the labels.

1. For input variables create a dynamically allocated array of input type (keep the
pointer to this array). So, you have access to the variables both through the data
structure you have built, as well as through an array. So, all variables become acces-
sible by simply accessing the members of the array (by indexing).

2. Create and use (consult) a table for the 〈label,pointer to element〉 information.

3. For the ‘used before defined’ cases insert a pointer to special structure which can be
defined by

#define LABEL 6
#define LABEL_NAME(p) (((label *) p) -> label)
typedef struct {char kind; char * label;} label;

4. Then, later when all of the sexpr input is processed, do a search (presumably recur-
sive) on the data structure you have built, and replace all ‘pointers to labels’ by the
appropriate element (by finding the (pointer to the) actual element by a search for
the label in the table).

In the last form of the data structure no (label *) shall exist any more.

15In your programming you better use the NOT, OR,. . . ,INPUT macros instead of using 1, 2,. . . 5, directly.

Copyright ©Göktürk Üçoluk 2009

124 LOGIC CIRCUIT SIMULATION

• After the data structure is built (like the one that is displayed above), you are ready to
process the input vectors. First you store the values in the input variables by accessing
them as array members and than you evaluate the data structure. You shall do this by
calling an evaluation function. This function will of course be recursively defined. Starting
with the pointer that corresponds to the output of the data structure ((r) in the example),
calculate the action of the element the pointer is pointing to. The function will only do a
calculation and change nothing on the structure. But after the calculation for a vector is
done, the memory fields of all the τ -flip-flop must be updated. For this case, you must
device a mechanism that will change the former_state field. Think about it, you will
find out that there are several solutions to this problem16.

16If you need you can make minor modifications to the struct definitions.

Copyright ©Göktürk Üçoluk 2009

MAP EXTRACTION 125

32 MAP EXTRACTION ’02 HOMEWORK 4 17

Introduction

One of the problems in robotics is map extraction. A robot simply has two interactions with
the bounded environment it is in: perception and action. It perceives information about a small
portion of the environment via its sensors, which could possibly be a camera, a touch sensor,
thermal sensor etc. Processing its sensory information, it picks one of the possible actions it
can perform, and executes it. For a real robot, this action may be turning to a direction by a
certain angle, dashing forward/backward by activating its step motors etc. While it moves in
the environment, it processes the environmental information it has been collecting, in order to
construct an almost-accurate map of the environment. Since the power resource of the robot is
finite, an important problem in map extraction is how to minimize the number of actions while
accurately constructing the map from sensory information history.

Problem Description

• In this homework, you will be dealing with a simplified version of map extraction prob-
lem. We will assume that the bounded environment, in which the robot will be navigating,
is an n×m grid world.

• In this world, each cell is either empty or blocked.

Figure 1: A sample grid world with a robot in one of the empty cells. Shaded cells are
blocked.

• A robot is initially placed into a randomly chosen empty cell in this synthetic domain.

• The robot performs actions in order to navigate among the grid cells. Each action takes 1
discrete time step in our world. The robot has the ability to move into 4 directions in every
discrete time step: west, east, north, south. Initially, time is 0.

• Executing one of these actions, the robot moves one cell towards the chosen direction,
provided that the destination cell is an empty cell. If the destination cell is not an empty
cell, the action has no effect (i.e. the robot stays at its location).

Copyright ©Göktürk Üçoluk 2009

126 MAP EXTRACTION

• Unfortunately, our robot is blind. It can not see anything around; however, it can under-
stand whether the action it performed had been successful or not.

• Our goal is to design a robot that navigates in the grid world in order to build up a map.
In other words, the mission of the robot is to come up with a solution which states

– the dimensions of the rectangular grid world

– the coordinates of the block cells

Figure 2: Suppose the robot is positioned as in the left figure. If the robot performs one
of the actions east, west or south, its location will not change. If it performs the action
north, the new location of the robot is shown in the right figure.

Specifications

• The problem stated in the previous section is very well suited to client-server architecture.

– Using UNIX terminology, a server process/program (server, in short) is a process/program,
which continually waits for information/task (service, in short) requests from other
processes/programs, after it starts execution. When such a request comes, it does
some computation (related to the domain it is responsible to serve for) inside, pre-
pares a response for that request, and sends this response back to the calling pro-
cess/program.

– The process/program that requests service from the server is called a client pro-
cess/program (client, in short).

• For our problem, a server that simulates the grid world environment is available. When
starts execution, the server creates a grid world, places a robot randomly to an empty cell,
and waits for a client to request service.

• When a client connects to the server, the client has the opportunity to move the robot in
the world, and get responses from the server.

– The client may send to server one of the strings "e" , "w" , "n" , "s" representing the
actions east, west, north, south respectively.

Copyright ©Göktürk Üçoluk 2009

MAP EXTRACTION 127

– Upon receiving this action request from the client, the server tries to move the robot
to the requested direction. It increments the time counter by 1.

– If the action is successful, the server sends back the string "+" representing success
or the string "-" representing failure.

– If the server receives an illegal action request, action is assumed to fail, thus it reports
back failure.

– Server does not perform any change in robot location unless the client asks for an
action to move the robot.

• Server can give service to only one client at a time. You can download the server program
through the web address
www.ceng.metu.edu.tr/ ∼ceng140/hw4/
You will also find help on usage.

• Communication among server and client will be realized through network sockets. Infor-
mation about socket programming is available through web address
www.ceng.metu.edu.tr/ ∼ceng140/hw4/

• As you might expect, you will write the client program that communicates with the server
through network, directs the robot actions, and build up the environment map using the
responses that come back from the server. Your program will accept 2 command line
arguments: an IP address and a port number. For example, if your client program has the
name hw4; assuming that the server program has started execution on the machine that
has the internet address 144.122.71.23 and has opened the socket port number 30000 ,
you will execute your client by
hw4 144.122.71.23 30000

• Remember that the client you will implement will not have any prior information about
the grid world it will try to learn.

• Output of your program will be a sequence of numbers in the following format:

– The first line will consist of two positive integers separated by one blank, which are
the vertical dimension and horizontal dimension of the grid world respectively.

– The lines following the first line will be the integer coordinates of the blocks. Assum-
ing north-west corner cell of the world is the origin, cell with coordinate (0, 0), each
line will consist of two integers separated by one blank: first integer will be the ver-
tical ordinate, and the second integer will be the horizontal ordinate. For example,
for the grid world shown in first figure, after a long navigation in the environment,
your program should come up with a solution by printing out the following:
8 10
1 7
2 0
2 1
2 2
2 7
2 8
3 9

Copyright ©Göktürk Üçoluk 2009

128 MAP EXTRACTION

4 4
5 2
5 3
5 8
6 1
6 7
7 8
7 9

– The output order of coordinates is not important.

• You can assume that, there will not be any unreachable regions in the environment. This
may happen if a number of empty cells are surrounded by blocks, for example.

• The limitations in dimensions of the grid world and the number of obstacles are the same
with server’s limitations. See the server web page for details.

• Your program will be graded according to the following parameters:

– Code quality; i.e. organization, modularity and indentation,

– Solution quality; i.e. number of time steps to reach the solution and computational
speed,

– Originality of your solution method

• You should also submit a one page report on your solution strategy (or algorithm), before
the homework submission deadline. In this report, explain very briefly and clearly what
is the method you used to solve the problem.

ATTENTION: In this homework, it is very important that you design your OWN solution
method. Do not share ANY information about your solution approach with your friends!

Copyright ©Göktürk Üçoluk 2009

MAP EXTRACTION 129

sectionSTEGANOGRAPHY
’03 HOMEWORK 1

Introduction

Steganography has its origin in the Greek words “stegonos” (invisible, hiding) and “graphos”
(graphics, writing style, recording method). It is a technique for transmitting information with-
out disclosing it to any other people.

This idea is in these days adopted for digital information sources. Digital watermark is the
new name of this old idea. It is now quite common to embed (hide) digital information (either
text or image) in some other digital information (usually image or sound). The encoding and
decoding is done by a pair of programs (or two subunits of a single program). The encoder takes
in two inputs ((T) the information that is going to be hidden and another digital information
(S) which will hold it) and produces an ‘almost’ similar digital information (S′) which is in hold
of T . The key point is that the produced S′ is very similar to the original S. The decoder takes in
S′ and produces T out of it.

It is common that S is a digital image. Digital images are stored in a variety of ways. One
way is to consider the image as a two dimensional matrix. Such images are called raster images.
In a raster image each matrix element is holding a visual information (color/gray level/black
or white info) which is called a pixel value. If an image of Height ×Width is represented by a
N×M matrix, then the matrix element18 at (i,j) is in hold of the visual information of a rectangle
which has its top-left corner placed i×Height

N
down, and j×Width

M
to the left of the top-left corner

of the image. The small rectangle which is generated from a single matrix element is a pixel of
the image. A pixel has only a single visual information.

The visual information is a color encoding for a color image; a gray level value (degree of
grayness) for a b/w image where gray tones are allowed; or a binary (0/1) information for a
b/w (no gray tones allowed) image.

There exist various color encodings. One is RGB another is CMYK (others exist as well). Al-
most all of the encodings are based on the same idea of simulating a color by a linear combina-
tion of some fixed colors (frequencies). This can be done because the eye can be tricked as far as
colors are concerned. An eye perceive such a combination of colors as some single color (some
frequency on the spectrum).

RGB refers to the primary colors of light, Red, Green and Blue, that are used in monitors,
television screens, digital cameras and scanners. CMYK refers to the primary colors of pigment:
Cyan, Magenta, Yellow, and Black. These are the inks used on the press in “4-color process
printing”, commonly referred to as “full color printing”.

Let us return to the subject of the formats to store raster images. You are probably aware
of a variety of such formats. Files, in hold of digital images, bear file extensions that indicate
the format the digital image is stored in. Among them you may recall JPG, BMP, TIF, GIF, PPM
and may be some others. Some of these also incorporate compression mechanisms designed for
images.

In this homework you will be dealing with the plain PPM (ascii) format. PPM is the abbre-
viation of “portable pixmap”. Plain PPM has a very simple structure lay out:

• It starts with the ascii codes ’P’ and ’3’ (this “P3” is called the magic number: a kind of
signature that tells this is a “Plain PPM” format)

• Whitespace (any number (≥ 1) of blanks, TABs, CRs, LFs).

18assuming the indexing start a 0

Copyright ©Göktürk Üçoluk 2009

130 MAP EXTRACTION

• A width M , formatted as ASCII characters in decimal.

• Whitespace.

• A height N , again in ASCII decimal.

• Whitespace.

• The maximum color-component value, again in ASCII decimal.

• Whitespace.

• Width×Height many pixels, each three ASCII decimal values between 0 and the specified
maximum color-component value, starting at the top-left corner of the image, proceeding
in normal English reading order. The three values for each pixel represent red, green, and
blue, respectively; a value of 0 means that color is off, and the maximum value means that
color is maxxed out.

• Characters from a ’#’ to the next end-of-line are ignored (comments).

• No line should be longer than 70 characters.

Copyright ©Göktürk Üçoluk 2009

MAP EXTRACTION 131

Here follows an example

P3
#An example image data in ppm format enjoy it.
4 4
15

0 0 0 0 0 0 0 0 0 15 0 15
0 0 0 0 15 7 0 0 0 0 0 0
0 0 0 0 0 0 0 15 7 0 0 0

15 0 15 0 0 0 0 0 0 0 0 0

Problem

In this homework you will be writing a simple digital watermark encoder/decoder. The T
information, in our case, is plain ascii code taking values from the set [’A’-’Z’,’a’-’z’,’ ’,’.’] and S
is a image in PPM (portable pixmap) format.

You are expected to write two programs, namely encoder.c and decoder.c . encoder.c
will be reading a plain PPM image data from its standard input. The text T which is going to
be hidden in the image will be given on the second line of the input, as a comment (i.e. prefixed
with a # and ended with the EOL character ’\n ’. The output of this program is PPM encoding
of S′. This PPM output will not have any comment line present (a line starting with a #).

decoder.c is expected to read a plain PPM image data, created by the encoder.c program
and produce on the standard output the hidden text T .

Various methods, ranging from high quality to low quality, can be used for the ‘embedding’.
The quality is steaming from the degree of difference of the images S and S′. A minimal dif-
ference is preferred and corresponds to a high quality encoding. We quantitatively define this
quality as:

Quality =
NM

√
√
√
√
√

∑

all pixels
C∈{red,green,blue}

(

SijC
− S′

ijC

)2

Your grading will be linearly depending on the quality of your encoding.

Specifications

• You will be dealing with plain PPM image inputs in the context explained in the previous
section.

• Image Height and Width values will be in the range [50,500]. These values of an input
image cannot be altered in the corresponding output image.

• The input image maximum color component value will be ≤ 254.

• The following will hold for the text T :

– The text will be provided on the second line of input starting with #.

– Text may contain upper/lower case letters (from the ascii table), blanks and a dot.

Copyright ©Göktürk Üçoluk 2009

132 MAP EXTRACTION

– Text is consisting of some words of English separated by single blanks and ended
with a ’.’. The # is not a part of the text but exactly the first character following it, is.

– The text length (including the dot –which is also a part of the text) is in the range
[2,50].

– The text, though made of words of English, may not have a meaning and may not be
grammatically correct.

• The output image will not contain any comment line (a line starting with #).

• There will be no direct or indirect information passing, by no means, from the encoder
program to the decoder program. This includes files, environment variables, connection
to external data sources. Any program doing so will receive zero.

• Your program has to complete in less then 1 sec.

• What you will submit is a tar file. Tar is a program of Unix, used to pack files togather.
You have to pack your files by the command:

tar -cf hw1.tar encode.c decode.c

Grading

• Your program will be run with an extensive amount of different test data, ranging from
small to big images. Each run will performed with a different data. This data will be the
same for all students.

• For each student, for each run the Quality value will be computed. If your decoder pro-
duces the encoded text correctly then you receive, for that run, a grade contribution of

1

R
×

(
Qualityyour

Qualitybest
× 40 + 60

)

Where R is the count of tests. Qualitybest is the best Quality value observed for that test
data among all students.

• If your total grade is less then 30 then your program will be eye-inspected by the TA and
judged to receive a grade in the range [Your grade, 30]. This will be final end decisive. No
objection will be considered for this judgment.

Copyright ©Göktürk Üçoluk 2009

SYMBOLIC DERIVATIVE 133

33 SYMBOLIC DERIVATIVE ’03 HOMEWORK 2

Introduction

In this homework we will be dealing with the differentiation of single variable mathematical
expressions.

To ease the pain of parsing a restricted and simplified version of mathematical expression
will be considered. Below you will find the BNF description of the syntax of the mathematical
expressions we will be dealing with.

〈expression〉 ::= 〈expression〉 〈operator〉 〈expression〉 |
〈expression〉 ˆ 〈natural number〉 |
(〈expression〉) |
〈atomic〉

〈atomic〉 ::= 〈natural number〉 | X | sin | cos | tan | sh | ch | ln
〈operator〉 ::= + | - | * | /

〈natural number〉 ::= 0 | 1 | . . . | 100

In addition to this an expression can contain any number of whitespace provided that does not
split an 〈atomic〉. The semantics is as follows

• The single variable X is denoted by the letter X.

• sin , cos , sh , ch , tan , ln stand for sin(X), cos(X), sinh(X), cosh(X), tan(X) and ln(X)
respectively.

• 〈expression〉ˆ n means 〈expression〉n

• Precedence (greater value means performed first) and associativity of the operators are

Operator Precedence Associativity

+ - 1 left

* / 2 left
ˆ 3 right

Problem

Your program will read a single expression and will produce the derivative expression (with
respect to X) of this expression.

The resulting expression doesn’t have to be in the simplest form. Furthermore it is allowed to
have parenthesis which actually could be omitted. Though, having no more then 20% more then
necessary parenthesis will be awarded with an additional 20 points. So, you have the chance to
receive 120 points from this homework.

Here is an example,
Input:

Copyright ©Göktürk Üçoluk 2009

134 SYMBOLIC DERIVATIVE

(Xˆ2-1) * tan - lnˆ2 /X

Output:

(Xˆ2-1) * (tanˆ2+1)+2 * X* tan+(2 * ln * X-lnˆ2)/Xˆ2

This is quite an elaborated output. Yours does not have to be that advanced. (But if you manage
to do so you get bonus!)

(((((Xˆ2)-1) * ((tanˆ2)+1))+((2 * X) * tan))+((((2 * ln) * X)-(lnˆ2))/(Xˆ2)))

is another alternative with some redundant parenthesis present.

Specifications

• You will be reading a single expression from the standard input which is the expression
you will take the derivative of. The input may be scattered over lines, contain blanks (not
corrupting any atomic) and will be terminated by EOF.

• Your output is the derivative expression on a single line containing no blanks.

• The count of operations in the input is ≤ 20.

• The following derivative table is provided for your convenience:

Expression Expression′

N (natural number) 0
X 1

sin cos
sh ch
ch sh
ln 1/X

21 + 22 2
′
1 + 2

′
2

21 * 22 2
′
1 * 22 + 21 * 2

′
2

21 / 22 (2′
1 * 22 - 21 * 2

′
2)/2

2
2

2 ˆ N N* 2 (̂ N -1) * 2
′

• Any exponent given in the input will be ≥ 2.

• Simplification is not required in this homework. This is so even for operations only in-
volving numbers with one exception: the exponent. Any exponent in your output must
be a reduced to a single number.

• No cos will be appear in the input. (The reason for this is to keep the problem simple: we do
not have unary minus!)

• If you do some simplification, do not produce negative numbers, or introduce unary mi-
nus signs, this may mislead the evaluation process.

• The correctness of your output expressions will be tested by evaluating the expression at
several numerical values of X. Therefore, the order and form of your expression is unim-
portant, since arithmetic obeys the Church-Russer property.

Copyright ©Göktürk Üçoluk 2009

SYMBOLIC DERIVATIVE 135

• You are guaranteed that the input is well formed and does not contain any error, complies
with these specifications. Therefore, you do not have to bother with any error check.

• Please note that the variable X is in uppercase. Do not produce lowercase x ’s accidentally.

How to Do’s

• Implement Dijkstra’s algorithm (Phase 1).

• Implement evaluation algorithm (Phase 2), but push on this stack not the values but the
reconstructed infix expressions. The best way to do this is pushing on the stack pointers
pointing to dynamically created strings that are the infix representations of the sub expres-
sions. When you pop two such subexpression strings from the stack with the intention to
join them under an operation and push it back on the stack, do not forget to free the space
allocated for the operants, after having done the ’joining’.

• Golden hint: It is very vise to run a parallel (shadow) stack during Phase 2, where the
derivatives (also in infix form) are kept (generated) in parallel to the infix reconstruction
process.

Copyright ©Göktürk Üçoluk 2009

136 MODIFIED QUADTREES

34 MODIFIED QUADTREES ’03 HOMEWORK 3

Regulations

Due date: 13 June 2003, Friday (Not subject to postpone)

Submission: Electronically. You will be submitting your program source code through a file
which you will name as hw3.c by issuing the following single line at the Unix prompt.

submit140 hw3.c

Resubmission is allowed (till the last moment of the due date), the last will replace the
previous, provided you answer the interactive question positively.

For the written part see text.

Team: There is no teaming up. The homework has to be done/turned in individually.

Cheating: All parts involved (source(s) and receiver(s)) get zero. Yes, we definitely mean it!

I/O Specification: You are expected to write programs that %100 comply with the I/O specifi-
cations expressed in this worksheet. Do not beautify you I/O.

Introduction

This homework is about a modified version of quadtrees (an internet search will not harm but
will not do any good neither). For your information only, a quadtree is used in image compres-
sion where a rectangular image is subdivided into four equal sized quadrants this process (of
dividing a quadrant into further quadrants) is continued until all the pixels in a quadrant is of
the same color. This (recursive) division is then represented by a tree where each node is either
a terminal node of a single color or a intermediate node that has exactly four children.

Our modified quadtrees differ from this idea by the followings.

• A rectangle is divided into neighboring rectangles, but these do not have to be of equal
size.

• Each rectangle (whether subdivided further or not) is labeled by a unique alphabetical
string of maximal length 10.

• We are not interested in the colors but the dimensions of all rectangles (that will be the
output)

Copyright ©Göktürk Üçoluk 2009

MODIFIED QUADTREES 137

Below you can see such a possible subdivision of a rectangular area, and the quadtree corre-
sponding to it.
(For simplicity we use single character labels in the example, furthermore subdivided rectangles are labeled
with uppercase letters these are not part of the specification)

A

C

G

F
D

b

f h

ig

rt
j

q

a

us

Hl

k m
n

o p

c
e

d
B

v

a

b c e f g i h s v u

t q r

o p n

B C D

G

H

F

A

d

j k m l

Problem

You will be given a quadtree information in a linear format. The information also includes
some width and/or height of the terminals (i.e. rectangles which are no further subdivided).
The provided information is assured to be sufficient for the calculation of any dimension of all
rectangles.

Assume the following widths/heights are given for the above example.

Copyright ©Göktürk Üçoluk 2009

138 MODIFIED QUADTREES

A

C

G

F
D

b

f h

ig

rt
j

q

a

u

v

s

Hl

k m
n

o p

Be
dc

This will lead to a tree structure of
(unsigned number is a width, negative sign indicates height)

−6

−6

−4

−16
−610 4 12

14

4

22

54

−4−8

6 −6

a

b c f g i h s v u

t q r

o p n

B C D

G

H

F

A

ed

j k m l

This would be given in an input as:

(A (B [b 10] [c -8] d [e -4]) (C [f 4 -16] g [i 12] h) (D s (F [t 14] (G
(H j [k -6] [m 6] [l -6]) o [p 4 -6] n) q [r -4]) [v 22] [u -6]) [a 54])

Based on this you are expected to output all the width and height informations. Here are a few
lines from the output.
...
A 70 40
B 16 12
...
F 32 22
...
a 54 12

Copyright ©Göktürk Üçoluk 2009

MODIFIED QUADTREES 139

b 10 4
c 10 8
...
o 10 6
p 4 6
...
(The order of the lines is absolutely not important.)

Copyright ©Göktürk Üçoluk 2009

140 MODIFIED QUADTREES

Specifications and How to Do’s

• (For explanation on additional whitespaces see next two items)

〈tree〉 ::= 〈terminal〉 | 〈nonterminal〉
〈nonterminal〉 ::= (〈label〉 〈upper left quandrant〉 〈lower left quadrant〉

〈lower right quadrant〉 〈upper right quadrant〉)
〈terminal〉 ::= 〈label〉 | [〈label〉 〈pinteger〉] | [〈label〉 - 〈pinteger〉] |

[〈label〉 〈pinteger〉 - 〈pinteger〉]
〈upper left quandrant〉 ::= 〈tree〉
〈lower left quadrant〉 ::= 〈tree〉
〈lower right quadrant〉 ::= 〈tree〉
〈upper right quadrant〉 ::= 〈tree〉

〈pinteger〉 ::= 1 | 2 | . . . | 〈upper limit explained in text〉

• Two consecutive labels are separated by one whitespace at least.

• The input may contain any number of whitespaces at any place provided that no label or
(positive or negative) number is split.

• The input/output is from/to standard input/output.

• All width and heights (calculated or given) are positive integers that can be represented
as a 32 bit (unsigned long int).

• Labels are case sensitive (as it is in the example).

• The inputs will have at least one nonterminal.

• There is no limitation on the size of the tree. All memory allocations (except a few vari-
ables) have to be done dynamically.

• The output is a list of
〈label〉 〈width〉 〈height〉

where both 〈width〉 and 〈height〉 are 〈pinteger〉 . All 〈label〉 that were present in the
input must exist once and only once in the output. Each 〈label〉 has to be on a seperate
line of the output.

• Your program is expected to have a time complexity of O(N log N). Your program will be
tested with various sized trees under a time limit that is twice the sufficient amount for a
program to run for the largest data, with the given complexity (written by the evaluating
team).

• You cannot keep the input. You must consume it by a one pass algorithm that constructs
the tree on-the-fly. This algorithm necessarily has to be of a recursive nature (think about
it).

• Unless you have a very profound C programming knowledge do not think of alternative
data structures other then trees. Though, for efficiency reasons minor modifications to tree
structures can be thought of.

Copyright ©Göktürk Üçoluk 2009

FOURIER TRANSFORM 141

35 FOURIER TRANSFORM ’04 HOMEWORK 1

Introduction

The Fourier transform that we will be dealing in this home work has many applications, in fact
any field of physical science in which signals can be expressed as a sum of sinusoidal signals
with different amplitudes will make use of Fourier series and Fourier transforms.

In our forthcoming homeworks we will have a basic application of the image reconstruction
technique behind the (CT) Computerized Tomography or MRI (Magnetic Resonance Imaging)
(also known as NMR). The details will be explained in the next homework in the series, but this
time (in this homework) we will concentrate on Fourier Transform and the computer realization
Discrete Fourier Transform (DFT), a mathematical transformation which is in the very core of
this technique.

The continuous form of the Fourier transform is:

F (α) =

+∞∫

−∞

f(x) e−iαx dx

We discretize the continuous function f(x) with some constant interval (∆x). so x→ n∆x. If the
sampling is taken at N (equally spaced) points, then αx→ 2πnk

N
and the integral is transformed

into a summation over the whole space of samples:

F (k) =
1

N

N−1∑

n=0

f(n) e−i 2πnk
N k = 0, 1, . . . , N − 1

here of course we redefined F and f over indexed values. (ie. f(n) ≡ f(n∆x)).

Problem

The problem is to write a program that computes and outputs the F (k) values when the values
f(n), n = 0, 1, . . . , N − 1 are given as input. Note that F (k) values are normally complex. For
your computation you will be making use of the identity:

eiξ = cos ξ + i sin ξ

Specifications

• The N value will not exceed 1000.

• You will be using double precision.

• Input is from standard input and output is to standard output.

• The input consists of a sequence of f(n) values. They will be separated by at least one
white space. It is quite possible that the count of white spaces vary. You will not be
knowing the actual value of N prior to the input of f(n) values. The end will be detected
by an end-of-file at the standard input.

Copyright ©Göktürk Üçoluk 2009

142 FOURIER TRANSFORM

• The output will only consist of N lines. The k’th line (we start counting lines at 0) will be
containing exactly two double values separated by a single blank: If F (k) is calculated
as the complex number A + iB then the kth line will consist of A followed by B separated
by a single blank. (absolutely do not use any other separator).

• The actual test data will not be provided.

• You are strongly advised to solve the problem on the computer prior to your lab session

and also practice to have full control over the editor, compiler, etc.

Copyright ©Göktürk Üçoluk 2009

CONTROLLING ELEVATORS 143

36 CONTROLLING ELEVATORS ’04 HOMEWORK 3

Introduction

This time you will be dealing with the control of N number of elevators. As we all have lots of
experience on the subject, elevator control can be done always ’more intelligently’ (or at least we
get such a feeling).

The problem is that the demand on the human side is stochastic, though it may display some
characteristic patterns as well. For example, in the morning time people will mostly emerge from
their homes and get to the elevator aiming to get to floor 1, where in the evening time it is just
the reverse. In the mid of the day the usage intensity will drop, but such a pattern of the demand
type will be less observable.

Furthermore, there are some hidden rules: like an elevator going down, shall not change
course (due to a pushed button), and go in the reverse direction (even for one level) and pickup
the person who pushed the button.

Problem

We will be dealing with a simplified N -elevators problem. In our case the only stochastic behav-
ior will be in ‘pressing buttons’. The getting in and getting out of the elevator will be a constant
time (which is certainly not so in real life). Furthermore, our elevators will have an infinite load
capacity.

Your time is also discretized. That means you will call a function (you have to do so) to get
the events of the next time instance (after unit time has passed). Your response is with a set of
actions for the elevator motors. If you do not specify an action the previous state of the motor
is continued. (Yes, if you do something wrong you may crash the elevator). There are some
parameters that you will read from the standard input, prior to running the simulation. These
parameters will be about the value of N (how many elevators you have), how many requests
you will receive in total, the time (measured in unit time) it takes to move from one level to the
other and the (fixed) time spend when you stop to serve a request.

Interactively (interacting by calling at each time step a function) you will learn about the
status of new requests and in reaction to this you (your program of course) will decide about the
changes of the actions of the elevator motors. Per elevator you will be able to do this by issuing
a command that is one of up, down, stop.

Your aim is to minimize the sum of squared times that is spend by individuals that per-
formed a request and get their wish served. In other words, we sum the square of the elapsed
times, assuming each individual has a stopwatch that s/he starts when s/he presses a request
button and stops when s/he gets out at his/her destination floor. As a programmer our aim is
to minimize this sum.

Copyright ©Göktürk Üçoluk 2009

144 CONTROLLING ELEVATORS

Specification

Your program will start by reading from the standard input the following values (they will be
separated by at least one blank):

N : A value in the range [1-5] denoting the count of elevators.

R: Total count of (external) requests that will be made [1-10000].

L: A value in the range [1-200] denoting the count of floors.

t: An integer in the range [1-10] denoting the time (measured in unit time) required to move the
elevator from one level to the next (either up or down).

d: An integer in the range [1-100] denoting the time (measured in unit time) the door will remain
open when somebody gets in or out of the elevator.

T : Maximal time interval (measured in unit time) in which all servings has to be completed
after the last external request is made. This is an integer in the range [1-10000].

There are some rules about the simulation:

• There are no run-away requesters. All requests keep their positions until they are served.

• There are no I-have-changed-my-mind cases among the individuals that entered the el-
evator car (and hence pressed a button). Everybody will leave the car at the level s/he
pressed the stop-at-level-request button for.

• There is no information about the ‘count of individuals that made the elevator-call-request’.
There can be more than one individuals be waiting at a certain level. A single request for
the elevator (we will call this external request), may later (when the elevator car arrives at
the request point) chain more than one stop-at-level-request button pressing.

And there is nothing wrong with this. Absolutely each individual will press a stop-at-
level-requests for him/herself (we will call these internal requests). This is so even if two
individuals will have the same destination (the button will be pressed twice).

• It is also possible that while the door is open, an individual arrives, enters the car and
immediately presses the button. So, during the d time (including its end point in time) it
is possible to receive internal requests. If the the elevator is empty, the door stays open
indefinitely. When an individual enters such a car (an empty one), if the the time passed
(door-is-open time) is greater or equal to d then the door closes, otherwise the elevator
waits (having the door still open) to complete d and then closes it.

• An elevator cannot move when its door is open. Trying to do so is not an error but this
command will be ignored.

• The time d is independent of how many individuals gets in or out.

• While the car is moving in a direction (and occasionally stopping on the way), it cannot
change this direction until it has served all the stop-at-level-requests in a direction made
by the individuals in the car. So if the car was empty and two individuals that have stop-
at-level-request that are in opposite different directions entered the car, you can move in

Copyright ©Göktürk Üçoluk 2009

CONTROLLING ELEVATORS 145

either direction. But if the car is not empty and you have a new comer that has a request
which requires to change direction, you cannot. If you decided to move in one direction,
you have to serve all individual having the destination in that direction and just then you
are allowed to change direction.

If your program orders a move which is a violation of this rule this will be considered an
error.

• There is only one external request button on each floor level. If the button is pressed once,
until the elevator serves that floor, the effect of consecutive pressings of the same button
have no effect. They are not recorded nor any information of such additional pressings is
conveyed to the program.

• An individual entering the car immediately presses the stop-at-level-request button (in
the car) even if the button was already pressed. All the (new) pressed button information
is available in the first following time frame (function call). This includes those buttons
that were pressed once and now pressed again (otherwise we could not calculate the sum
of squares of times).

• As far as your actions are concerned: If you continue to run the motor of an elevator
beyond the boundaries (lower then the lowest floor or higher then the highest floor) this
will be considered as an error.

• In case of an error: You loose that test case completely. The testing will stop and
you will receive from that set of test data a zero. The testing process will continue with
the remaining test sets.

• Initially all elevators are resting at floor 1 (the lowest floor).

• The first call to status() is marked as time = 0. At the next call to status() the time
passed is 1 unit time. (What status() is is explained below)

• It is possible that the first status() call returns some internal requests.

• It is possible that you decide to stop more than one elevator simultaneously arriving at
the same level. In this case all of the people will get into one of the elevator. This elevator
will be chosen randomly by the status() function implementation. So, you do not have
any control over such an event.

• It is possible that while the door is open for a while d people continue to enter the elevator
car (without making any external request). But it is for sure that any person entering the
elevator car immediately presses his internal request button.

• If the door closes at a level (since a time of d has passed), it is not possible to reopen the
door at that level without moving the car. Also note that, the closing of the door does not
chain a move up/or down automatically. It is your responsibility to issue exactly at the
moment the door closes the up/or down move command. If you fail to give this command
the door will close and the elevator car will stay still (until you issue the command). If you
issue the command earlier than the door closes, this will not be considered as an error, but
will simply be ignored.

The final program that you turn in has to use an external extern function that will be named
as status() and has the following prototype:

Copyright ©Göktürk Üçoluk 2009

146 CONTROLLING ELEVATORS

struct request * status(void);

Here struct request is defined as:

struct request
{ char request_type;

char elevator;
unsigned char floor; };

Each time status() is called this function will:

• Free any heap allocation done in the previous call to status() .

• Advance the internal clock by one unit time.

• Fill out a fresh allocated heap array with the struct requests occurred in the last unit time.

• A terminator is stored at the end of this information, namely a struct request that has
the request type subfield set to 0 (zero).

• Return the pointer to the first element in this new allocated and filled out region.

The meaning of the information stored into a struct request is as follows:

request type:

0 : Array terminator.

1 : External request button is pressed at the floor level which is indicated in the subfield
floor .

2 : A person who has just entered the elevator car has pressed an internal request button
indicating his/her destination floor. (This floor information is available in the floor
subfield.)

elevator: An integer value in the range [1−N] indicating which elevator is in concern. This
subfield information is only relevant if the request is an internal one (i.e. request type
has value 2).

floor: An integer value in the range [1− L] indicating which floor level is in concern.

As said before, for the same floor level, until that level is served by an elevator, it is not possible
to receive two external requests (i.e. request type = 1). But in contrary to this, it is quite pos-
sible to receive, (even in the same status() call, two identical struct request ’s indicating
the same internal request (that means distinct individuals in that car have the same destination).

Note that the heap region you receive by a status() call will be automatically taken away
in the next status() call. So, if you want to keep some of this information, you have to secure
it to a place of your own.

At grading time, your program will be linked with the evaluation program which will pro-
vide

• the main() function

• the status() function

Copyright ©Göktürk Üçoluk 2009

CONTROLLING ELEVATORS 147

These functions will not be available during the development time, so, for test purposes, you
have to write them on your own. Do not forget to remove those definitions prior you turn in

you solution.

Your program has to provide a function that you will name as action() . This function will
have the following prototype:

void action(char * elevator);

At grading time the main() written by the evaluator will loop through

• calling action() and then

• inspecting the correctness of the action you have stored in the place that is pointed by the
argument of action and

• if the action is correct bookkeeping of state and score etc.

You get the power when the action() function is called. Presumably your first action will
be a call to status() . This will advance the time by one time unit, (during this period your
(previous) actions are also carried out) and get the new events. The time marks of all these events
are this new time. For example, all the events return by the third call of status() are assumed
to have occurred at time=2. (In the remaining stay of you in action()), time is frozen at that
point in time. We assume that you will do your own computation then, make some decisions
about the motor actions, submit these decisions by storing them into the place which is pointed
by the argument (char * elevator) of action() , and return from action() .
This content that you will store will be as follows:

elevator[0] : Leave empty. Will not be inspected.

elevator[1] : Action for the motor of elevator1.

elevator[2] : Action for the motor of elevator2.

...

elevator[N] : Action for the motor of elevatorN .

Actions are as follows:

-1 : Continue the previous action.

0 : Stop the motor.

1 : Motor moves the elevator car down.

2 : Motor moves the elevator car up.

As it was stated earlier, you can reverse the move direction of a car if it arrives and/or leaves
empty.

For all the individuals that enter at a certain level the waiting time that has passed will be the
same value. This value is the time elapsed from the moment the (external) request at that level
was made to the moment the car stops and the door opens.

An individuals total time (that will be squared and summed up) is this waiting time + the
time spend on the elevator car until the door opens at his/hers destination floor.

Copyright ©Göktürk Üçoluk 2009

148 CONTROLLING ELEVATORS

After R th external request is received, you have to complete all servings in T unit time. To
complete means: the very last individual(s) quit(s) at his/her/their destination floor. The eval-
uation program will keep track of the individuals waiting to be served. When all get served,
the evaluation program will detect this and stop calling action() , and will grade your perfor-
mance. You are welcome to finish earlier (not spend all T unit times). If you cannot manage to
finish in T unit time (after the last request was made) this will be considered as an error.

After completion, the final state of the elevator motors are unimportant (you don’t have to
stop them).

Each action() call will exactly call status() once and only once.
Normally, each action() has to return promptly. If you are wasting an eye-observable

time: you are doing something wrong. The evaluation program, will consider your program to
perform erroneously in this case.

Grading

• Your program will be run with an extensive amount of different test data, ranging from
small to big. Each run will be performed with a different data. This data will be the same
for all students.

• For each student, for each run the Quality value will be computed. This quantity is de-
fined as:

Quality =
S

√
∑S

i=1〈individual’s total time〉i
Where S is the count of carried individuals.

If your program runs correctly you receive, for that run, a grade contribution of

1

Z
×

(
Qualityyour

Qualitybest
× 40 + 60

)

Where Z is the count of tests. Qualitybest is the best Quality value observed for that test
data among all students.

• If your total grade is less then 30 then your program will be eye-inspected by the TA and
judged to receive a grade in the range [Your grade, 30]. This will be final end decisive. No
objection will be considered for this judgment.

Copyright ©Göktürk Üçoluk 2009

MATH EXPRESSION PARSING & PRINTING 149

37 MATH EXPRESSION PARSING & PRINTING
’04 HOMEWORK 4

Introduction

In this homework we will be dealing with multivariate infix expressions.

Below you will find the BNF description of the syntax of the expressions we will be dealing
with.

〈expression〉 ::= 〈expression〉 〈operator〉 〈expression〉 |
(〈expression〉) |
〈atomic〉

〈atomic〉 ::= 〈natural number〉 | 〈variable〉
〈operator〉 ::= + | - | * | / | ˆ

〈natural number〉 ::= 0 | 1 | . . . | 1000000

〈variable〉 ::= 〈letter〉 | 〈letter〉 〈variable〉
〈letter〉 ::= A | B | . . . | Z

In addition to this an expression can contain any number of whitespace provided that no
〈atomic〉 is split (this could be expressed also in BNF notation but that would severely injure
readability). Precedences (greater value means performed first), associativity and arity of the
operators are

Operator Precedence Associativity arity

+ - 1 left +:nary, - : binary

* / 2 left * :nary, / : binary
ˆ 3 right binary

Problem

You are supposed to write two functions that you will name infix internal and internal infix .

infix internal will take a string of a well-formed infix expression of the syntax above and
will construct the tree structured internal representation of it and return the pointer to this
structure.

internal infix will take a pointer of such an internal structure and form the infix expression
as a string. The most important property of this print is that the infix form shall contain
only necessary parenthesis.

In the next section strict definitions of the internal structure is given. Certainly when your func-
tion internal infix is evaluated it will not necessarily be your infix internal function
that will provide the argument (and vice versa). So it is not sufficient to have a lock-key match-
ing between infix internal and internal infix but also a very tight confirmation with
the standard of this worksheet.

Copyright ©Göktürk Üçoluk 2009

150 MATH EXPRESSION PARSING & PRINTING

Specifications

You have to use the following type/structure/macro/prototype definitions:

typedef
struct expression

{ char kind;
union

{ char * variable;
long number;
struct

{ char operator;
struct expression * operand[2]; } operation;

} data;
}

expression, * EP;

#define VARIABLE 1
#define NUMBER 2
#define OPERATION 3

EP infix_internal(char * expr);
char * internal_infix(EP tree);

The content of the union is recorded (of course by you) into the kind subfield using the
#define s above.

The variable subfield of the union is a pointer to a string that holds the ascii codes of the
letter sequence that make up the 〈variable〉. Don’t forget to make proper allocations for these
strings (or use strdup()). It is up to you to use the same pointer value for the same 〈variable〉s.
This will not make you gain nor loose any points.

Similarly the number subfield will hold an expression that is a 〈natural number〉.
If the expression is an operation, the operator subfield will hold the operator (so it will be

holding one of ’+’, ’-’, ’ * ’, ’/’, ˆ). The operand array will be holding:

if the operator is binary the pointers to the corresponding internal structure of the left hand
side of the operation (in operand[0]) and the right hand side of the operation (in operand[1]).

if the operator is nary then you implement the trick explained in the lecture: Having allocated
the necessary amount of memory for the array, you store the left-most operand of the nary
operator into operand[0] , the next into operand[1] ,. . . up to operand[n] in which
you store the right-most operand. You have to store a terminator NULLinto operand[n+1] .
So, don’t forget to make the allocation as big enough to have n + 1 proper positions.

Here is an pictorial example. Assume you are calling infix internal as follows:

p = infix_internal(
"(X + Y)+ (X+2451) -ABC * (10-Tˆ29 -(17 * (18-18))) * ABC/SSS"

)

Copyright ©Göktürk Üçoluk 2009

MATH EXPRESSION PARSING & PRINTING 151

The internal structure p is pointing to shall look like:

3

1

3

1

2

1

1

2

3

2

2

3

1

2

2

3
3

1

1

3

’+’

’/’

’−’

p

"SSS"

"X"

"X"

"Y"

24
51

18

18

17

’−’

’*’

29

"T"

10

’−’
’−’

’^’

"ABC"
3

’*’

3

"ABC"

And the internal infix(p) call shall construct and return the string:

"X+Y+X+2451-ABC * (10-Tˆ29-17 * (18-18)) * ABC/SSS"

Note that no spaces are allowed in this constructed string.
You are strongly encouraged to start with Dijkstra’s algorithm.
You are also strongly encouraged to write and use macros for each subfield given an EP.

Your submitted code will be inspected for this.
You are expected to submit a C code under the hw4.c name which

• Does not contain a main function definition.

• Defines two functions: infix internal , internal infix confirming with the given
prototype.

• Is able to separately compile into an object file.

Of course your code can include any count of other functions, global variables, types, pragmas
etc. As you can guess, our test program will contain the definition of main and will be linked
with the object code that is obtained by compiling your program. Attention: You are expected

to submit a C code and not the compilation result (namely the object code), compilation will

be done by us at evaluation time).

Copyright ©Göktürk Üçoluk 2009

152 FINDING ROOTS BY NEWTON-RAPHSON

38 FINDING ROOTS BY NEWTON-RAPHSON
’05 HOMEWORK 1

Introduction

This homework is about root finding. A so called Newton-Raphson method is a good and robust
way to determine numerically the positions of the roots in a given interval. The technique makes
use of the concept of the tangent line of a function. Unless the slope of a tangent line is zero, it
is bound to intersect the x-axis.

1

x x x3 2 1

θθ 2 1

f(x)

y

x

This point of intersection is easily calculated:

tan θ1 =
f(x1)

x1 − x2
= f ′(x1)

Which yields

x2 = x1 −
f(x1)

f ′(x1)

x2 is closer to the root compared to x1. It can be proven that if this process is iteratively continued
in the limit xn will meet the root. So, generalizing

xn+1 = xn −
f(xn)

f ′(xn)

In the application of this iterative algorithm it is important to choose the initial point x1 in the
close proximity to the root.

The derivative is also to be calculated in numerical form. As you know the value of a deriva-
tive at a given point a is de defined by:

df(x)

dx

∣
∣
∣
∣
x=a

= f ′(a) = lim
h→0

f(a + h)− f(a)

h

Of course in real life to take the limit is unrealistic. h has to be chosen as a small value. To
approximate the real limit, it is wise to take the average of the right hand side where h is first a

Copyright ©Göktürk Üçoluk 2009

FINDING ROOTS BY NEWTON-RAPHSON 153

positive small value and then a negative one. Let us assume the magnitude of this small value
is δ, then the numeric derivative value at a is calculated as:

f ′(a) =
f(a + δ)− f(a− δ)

2δ

Combining this tool of numerical differentiation with the Newton-Raphson method we are able
to compute the roots of an analytic function in a given interval.

Problem

In your lab session you will be given an analytic function definition in its mathematical repre-
sentation. An example of what you may get is below:

F (x) = x2 sin(x + 1) + x

There is no restriction on the form of the function. But you are assured the continuity of the
function over the interval that will be given from input.

You will use this function and hardwire into your program, that willl read three floating
point numbers from the input: the lower and upper limits of the search interval, and an tolerance
value. The program will search and print out the roots (in increasing order) that fall in the given
interval (including the end points). A printed root value will be accepted if it is in the range
[xreal root − tolerance, xreal root + tolerance].

Specifications

• Use double for all floating point values.

• You will insert the function definition, according to the mathematical description of the
function given during the lab session, into your code as a double returning function that
takes a double x argument and is named f . You do not have the freedom to change the
prototyping of the function. Below you see the exact form of the function definition if the
function would the one given as example, in the ”Problem” section above.

double f(double x)
{

return x * x + sin(x+1) + x;
}

• You are not allowed to define any function other than the main() function and the f()
function.

• You are not allowed to use macros (#define) with arguments.

• You are not allowed to implant the derrivative symbolically. You have to compute it
numerically at any point the way it is described above.

• Input is from standard input and output is to standard output.

• You can assume that the input is error free.

Copyright ©Göktürk Üçoluk 2009

154 FINDING ROOTS BY NEWTON-RAPHSON

• You are assured that there are no two roots closer than 10× Tolerance

• The input consists of three floating points separated by (at least one) whitespaces:

Intervallower bound Intervallower bound Tolerance

Example:

-8.7 11.1 0.001

• The output is the root values, printed in increasing order, seperated by at least one blank.
No additional make-up of the input, no beautification!
Here is the example output for the example function and the input above (yours may
deviate slightly):

-7.142721 -4.372346 0.000008 2.545359 5.085252 8.542115

• The actual test data will not be provided.

• If your function contains function calls of expt, sqrt, log or the trigonometric func-
tions don’t forget to link with -lm .

• You are strongly advised to solve the problem on the computer prior to your lab session

and also practice to have full control over the editor, compiler, etc.

Grading

• Your program will be compiled and run N times with different inputs. The grade weights
of the runs are equal. Testing is, as usual, blackbox style.

• A run is expected to terminate in at most 1 second. Otherwise it will be graded as zero for
that input. The proper implemetation of the algortihm, for the example function above,
with an input line of -100 100 0.0001 has found 64 roots in 0.26 sec CPU time, on an
AMD 2800, Linux.

• Announcing a root which is not in the range or is not a root at all will cost twice the points
of a missing of a root. Multiple output of the same root will count as a ’not root case’.

• Any program that cannot collect 30 points will be graded by eye. These eye evalutions are
not open to question. They are final and decisive and are not subject to any objection or
questioning.

Copyright ©Göktürk Üçoluk 2009

CHESS EVALUATION FUNCTION 155

39 CHESS EVALUATION FUNCTION ’05 HOMEWORK 2

Introduction

This homework is about computer-chess-play. The idea of chess-playing programs is based
on the exploration of massive numbers of possible future moves by both players and apply a
relatively simple evaluation function to the positions that results from those moves.

The waste number of possible moves at a point in time of the game are organized in a game-
tree on which search techniques like

• Minimax algorithm

• Search tree pruning

• alpha-beta pruning

• Killer heuristic

• Null-move heuristic

• Futility pruning

attack and discover some ‘good’ moves. All these search techniques are making use of a quantifi-
cation of the ‘value’ of current situation evaluated for the two sides, playing. This quantification
of a situation of the board is done by a function that we call the ‘evaluation function’. The eval-
uation function will evaluate the situation for the whites, for example, and conclude that the it
has a value of, let’s say, 652. Where, doing a similar evaluation for the blacks will yield some
other value, for example, 345. Then we conclude that the situation is in favor of the whites with
a strength of 652− 345 = 307.

The task of this homework is to write such an evaluation function.

Problem

Below we define the additive values that contribute to the value for a single color. The overall
value returned is the difference of valuewhite − valueblack.

The term color refers to one of the sides, namely, black or white. The term opponent color
refers, as implied, to the mutual other color.

Copyright ©Göktürk Üçoluk 2009

156 CHESS EVALUATION FUNCTION

The evaluation for color

1. Material (ρ value)

Each pawn 100, each knight 300, each bishop 320, each rook 500, the queen 900

2. Mobility (µ value)

For each piece and for each square +2 if the piece can move to that square. (Do not consider
the causal effects of the move, also consider all ’bound’ pieces movable).

3. Governing (ξ value)

For each square do the following:

(a) If color has a piece on that square and the opponent color either cannot capture it or
has a disadvantage in an exchange: +15

(b) If opponent color has a piece in that square and color can capture it or an exchange
will end in an advantage for color: +〈half the value of that captured piece〉

(c) If the square is empty and color can move a piece to that square, assume color has
moved its weakest piece to that square and then apply (a). If the square is empty and
opponent color can move a piece to that square, assume opponent color has moved
its weakest piece to that square and then apply (b).
For those cases where such a hypothetic move was possible, if color has a gained a (+)
value then add +5 (in sum, not for each possible move). If a move was hypoteticaly
possible and color would have gained nothing, then do not add any points, at all.

(d) If the square governed (a square that lead to a point due to (a), (b) or (c)) by color is
neighbour to the opponent color king, then multiply any such point by 5.

Determining the (dis)advantage outcome of an exchange:

• Sort all those color pieces that can capture the piece moved to that square, in the
increasing value order. Do the similar among opponent color pieces.

• profit← 0

• determine which list you will be starting with (think about it!).

• Alternating from one list to the other in each iteration, repeat the following two steps
until one of the lists gets empty

– Remove the first element (the piece) of the list, if you are processing the color
list in this iteration cycle then

profit← profit− 〈value of the removed element〉
else (that means the element was from the opponent color)

profit← profit + 〈value of that element〉
– Since it is not compulsory to capture, in Chess, if at any iteration cycle it is the

turn of removing the first element from color list, and profit at that moment is
negative terminate the iteration, immediately.
Similarly, if it is the turn of removing the first element from opponent color list,
and profit at that moment is positive terminate the iteration, immediately.

• If profit > 0 then color has advantage in the exchange, else it has disadvantage.

4. Positional evaluation (η value)

Copyright ©Göktürk Üçoluk 2009

CHESS EVALUATION FUNCTION 157

4.a Weak squares

For each square between rows 3 to 6 that does not contain a opponent color pawn
and can never be threatened by a color pawn (even if it moves forward): -15. If that
square is guarded by opponent color pawn: another -15. If there are more than two
squares that are of the same color (the colors of the checker-board squares) than an
additional -15. For each opponent color knight sitting on a weak square: -50.

4.b Bishop pair

If color has still both of its bishops on the board: +20

4.c Pawn islands

For each group of columns that are separated from another by not having even a
single color pawn in the column: -30

4.d Lonely pawns

Except those in column a and h, for any color pawn that does not have a color pawn
in one of the adjacent columns: -20

4.e Free-to-go pawn

For any color pawn, which path is not blocked by any other same or opponent color
pawn and cannot be captured by an opponent color pawn:

• if the pawn is in the 5. raw: +40

• if the pawn is in the 6. raw: +75

• if the pawn is in the 7. raw: +200

(Disregard any piece other than pawns)

4.f Active rook

If the opponent color has 4 to 7 pawns than +30 for each rook that is situation at the
rows 7 or 8.

4.g King’s security

For each square that is adjacent to the color king, and is under threat by the opponent
color: -20.
(Multiple threats on the same square shall be treated as one)

Below you see a board decoration and the positional aspects of the pawns.
(For simplicity we hide all the other pieces)

80Z0Z0Z0Z
7opZ0Z0op
60o0Z0Z0Z
5Z0ZpOpZ0
4PZ0Z0O0Z
3Z0Z0Z0Z0
2PZPZ0oPO
1Z0Z0Z0Z0

a b c d e f g h

Weak squares of W: a3,a4,a5,a6,c3,c4,c5,c6,e3,e4

Weak squares of B: d3, d4, d5, d6, e6

Pawn islands of W: {a2,a4},{c2},{e5,f4,g2,h2

Pawn islands of B: {a7,b7,b6},{d5},{f2,f5,g7,h7

Lonely pawns of W: c2

Lonely pawns of B: d5

Free-to-go pawns of W: e5

Free-to-go pawns of B: f2

Copyright ©Göktürk Üçoluk 2009

158 CHESS EVALUATION FUNCTION

In the descriptions above, any reference to the n th row shall be understood as relative to the
color’s view of board. So, a black pawn in g2 is at the 2. row when the subject color is black.
Note that this is not so for the standard piece position denotation. There, the rows are labeled
from a to h and are starting from the white’s edge. (in other words g2 refers always to the same
square of the board regardless of the color of the piece).

A program that you will write will take a board layout from the standard input produce the
value of the evaluation function applied to that board.

For information on Chess itself you may consult the URL: http://chess.about.com

Specifications

• We follow the standard notation where the pieces are identified by a single letter:
’P’ for Pawn, ’N’ for Knight, ’R’ for Rook, ’B’ for Bishop, ’Q’ for Queen, and ’K’ for King.
The letters are self-explanatory, except for the Knight, where ’N’ avoids confusion with the
King. The letter is followed by a square of the board. A square of the board is denoted by
a 〈column-letter〉〈row-number〉. 〈column-letter〉 is a letter in the range [a-h] and 〈row-number〉
is a digit in the range [1-8]. For the coordinate lay out refer to the board example above.
No space is allowed in the denotation of a piece. So Qe4 means there is a Queen at square
e4. Qe4 does not have any indication of the color of the queen. We furthermore, follow
the convention of dropping the P from the pawn notation. So inputs about pawns will not
contain the P (e.g.e4, alone, will have the meaning that there is a pawn at e4).

• Input: consists of two lines. Each line is of maximal length of 100 characters. The first
line is about the white pieces and the second is about the blacks. In each line pieces are
separated by commas (blanks may precede or proceed the comma). Here is an example
for the input:

Qd2, e4,a3,Ba2,f2 , Nf3,Kg1,g2,b2,Rc1,Rf1,Bg3 ,h3
h6,a7,Qe7,Rf8,f7, Nb6, Rc8,Bd7,Nf6 , g6 ,e5,Kg7

There is no order in a line of input (i.e. The same board configuration that has, lets say nw

white pieces and nb black pieces, could be entered in nw!× nb! different orderings). This input is
describing the board below:

80ZrZ0s0Z
7o0Zblpj0
60m0Z0mpo
5Z0Z0o0Z0
40Z0ZPZ0Z
3O0Z0ZNAP
2BO0L0OPZ
1Z0S0ZRJ0

a b c d e f g h

• In all test cases white has the next move.

Copyright ©Göktürk Üçoluk 2009

CHESS EVALUATION FUNCTION 159

• bf Output: Consists of a four lines that have exactly two long int separated by a single
blank:
valuewhite valueblack

where valuewhite and valueblack are the:

1. output line: ρ values for white and black

2. output line: µ values for white and black

3. output line: ξ values for white and black

4. output line: η values for white and black

calculated by the evaluation function described in the PROBLEM section for the inputted
board.

• All the run shall take no more than 1 second. (This figure is very very very generous)

Grading

Your program will be tested with several runs on various inputs. For each run the grading is
done with a tolerance measure: For each of your valuewhite and valueblack output values the
error is calculated (let’s say they are errorwhite and errorblack). Then by the following table each
of your errorcolor (there are eight of them) receives a penalty point. These penalties are then
summed into Penaltytotal.

errorcolor Penaltycolor

[0-10]% 0

(10-20]% 1

(20-30]% 3

>30% 10

Penaltytotal =
∑

ρ,µ,ξ,η

Penaltywhite + Penaltyblack

Your grade (out of 10) for that run will be calculated by:

max(0, 10 − Penaltytotal/6) [with one decimal digit precision]

For programs that receive a total grade < 25 in the automatic grading, a glass-box examination
of the source code will be carried out by the evaluator TA. He will judge an overall grade for the
program which might be greater than the grade that the automatic grading has provided. This
judgment is final and conclusive and is not open to query nor objection.

Copyright ©Göktürk Üçoluk 2009

160 ESCAPING A LABYRINTH

40 ESCAPING A LABYRINTH ’05 HOMEWORK 3

The simplest ‘last homework’ of the 14 years
of history of Ceng 140

Introduction

A labyrinth is a web of passages. These passages might be organized in various geometries.
Good examples of real life are corridors of buildings, the railroad system or the roads of a city.
One of a very common problem on labyrinths is to find a path, if exists, from a starting point to
an end point. usually the end point of which is defined as the exit.

Problem

The labyrinths that we will consider are rectangular areas of grid structure. Each grid cell is
either of type wall or of type passage. The north-west corner is the origin (0,0) of the coordinate
system, where increasing x is in the west→east direction and increasing y is in the north→south
direction.

An exit is a passage cell on the outermost part of the labyrinth. There may be more than one
such exists.

There is no regulation about the organization of the wall/passage cells.

Copyright ©Göktürk Üçoluk 2009

ESCAPING A LABYRINTH 161

The labyrinth and the starting point coordinate is defined in a text file labyrinth.txt .
Here is an example of a possible input file:

5 9
XXXXXXXXXXXXXXXXXXXXX XXXX
X XXXX X XX XXXX
X X XXXXXX XX XX
X XXXXXX XXXXXXXXX XX XX
X XX XXXX X XX X XX
X XX X XXX XX XXXXX XX XX
X X XX X X XX
X X XXX XXX XXXXXX XXXXX
X XX XX X XX XX XX
X XX XXXX X X XX XX XX
X XX XX XX XXX XX XX
X XX X XXX XX X XX
X XX XXX XXXXXXXXX XX
X XXXX XX XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX

The first line contains the (x, y) coordinates of the start point. The next lines are the definition
the labyrinth. As is obvious, ‘X’ is marking a wall cell, where blank is representing a passage
cell.

The program that you will write will find and mark a path that will lead to the exit. A
solution to the input file of above is:

XXXXXXXXXXXXXXXXXXXXX* XXXX
X XXXX X XX** XXXX
X X XXXXXX XX* XX
X XXXXXX XXXXXXXXX* XX XX
X XX*** XXXX X XX* X XX
X XX* X** XXX XX XXXXX* XX XX
X X * XX*** X X * XX
X X ** XXX* XXX XXXXXX* XXXXX
X XX * XX***** X XX* XX XX
X XX * XXXX* X X XX* XX XX
X XX XX XX*** XXX XX** XX
X XX X XXX* XX * X XX
X XX XXX* XXXXXXXXX* XX
X XXXX XX*********** XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX

The path will be marked by ‘* ’. If the start point is in a closed vicinity and hence there is no way
to any exit then you are supposed to mark all the interior of this vicinity by ‘. ’ characters. Let
us assume the first line of the labyrinth.txt file would read as

3 2

Copyright ©Göktürk Üçoluk 2009

162 ESCAPING A LABYRINTH

Then the output file solution.txt should look like:

XXXXXXXXXXXXXXXXXXXXX XXXX
X.XXXX..........X.XX XXXX
X......X.XXXXXX...XX XX
X.XXXXXX...XXXXXXXXX XX XX
X.XX XXXX X XX X XX
X.XX X XXX XX XXXXX XX XX
X.X XX X X XX
X.X XXX XXX XXXXXX XXXXX
X.XX XX X XX XX XX
X.XX XXXX X X XX XX XX
X.XX XX XX XXX XX XX
X.XX X XXX XX X XX
X.XX XXX XXXXXXXXX XX
X.XXXX XX XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX

Specifications

• The labyrinth is a rectangular.

• The labyrinth will contain at most 100000 cells. All row/column counts ≥3 that satisfy
this restriction are possible.

• Walls are persistent. It is not possible to move to a wall cell.

• The start point is a passage cell.

• A valid path is made up of adjacent moves marked by ‘* ’ and made in one of the west,
north, east or south directions. Diagonal moves are not accepted.

• Any valid path leading to any exit will be accepted. No need to search for shortest path.

• The input file is labyrinth.txt and the output file is solution.txt .

• Each test case will be tested with our own solution program not to cause a stack overflow.
Our solution program will not be using an external stack (a stack structure implemented
in the program).

• A maximal run time of 1 sec will granted. Normally your program shall require not more
than 0.1 sec.

• You are strongly advised to hold the labyrinth information in a pointer array, where each
element of the array is pointing to a char array that holds a row of the labyrinth. Certainly
do the space allocation dynamically (by malloc).

Copyright ©Göktürk Üçoluk 2009

ESCAPING A LABYRINTH 163

Grading

• No partial grading for a test case. Also no eye inspection+grading of non-working code.

• Any modification of the walls will lead to a 0 (zero) grading, independent of the correct-
ness of the solution path (be very careful about this).

Copyright ©Göktürk Üçoluk 2009

164 CT IMAGING - I (Radon Transform)

41 CT IMAGING - I (Radon Transform) ’06 HOMEWORK 1

Introduction

Welcome to the series of Ceng. 140 homeworks. The first two homeworks will be about the
computational aspect of Computed Tomography (CT). The same computational technique is
also used in Nuclear Magnetic Resonance (NMRI).

What is a CT scanner?

CT scanner is an imaging equipment that recon-
structs a cross-section (slice) of a 3-D object from pro-
jection images taken from around the object from var-
ious angles. The projection images are obtained by
X-Ray imaging (for CT case) or NMRI imaging meth-
ods. Scanners of today can obtain these images in
real-time.

A CT scanner looks like a big donut. The opening in which the patient is shifted is about 70 cm
in diameter. Inside the covers of the CT scanner is a rotating frame which has an x-ray tube
mounted on one side and the banana shape detector mounted on the opposite side.

A fan beam of x-ray is created as the rotating
frame spins the x-ray tube and detector around
the patient (see figure below). Each time the x-
ray tube and detector make a 180◦ rotation, an
image or slice has been acquired. This “slice”
is collimated (focused) to a thickness between 1
mm and 10 mm using lead shutters in front of
the x-ray tube and x-ray detector.
As the x-ray tube and detector make this 180◦

rotation, the detector takes numerous snap-
shots (called profiles) of the attenuated x-ray
beam. Typically, in one 180◦ lap, about 1,000
profiles are sampled. Profiles are detected by
an array of detectors (typically 700 detectors
aligned into a bow-like shape).

As the x-ray tube and detector make this 180◦ rotation, the detector takes numerous snapshots
(called profiles) of the attenuated x-ray beam. Typically, in one 180◦ lap, about 1,000 profiles are
sampled. Profiles are detected by an array of detectors (typically 700 detectors aligned into a
bow-like shape).

Copyright ©Göktürk Üçoluk 2009

CT IMAGING - I (Radon Transform) 165

Each detector is making a recording of what amount of x-
ray is received at that detector spot. This is a single number.
The key point (and the trouble of course) is that this piece of
information does not tell on which points on the line from
the x-ray emitter to the detector the attenuation occurred.
It is merely a simple recording of the final intensity that
arrived at the detector. So, each profile is an array of such
numbers.
Varieties of tissues, bones, all have different attenuation
responses to x-rays. For example bones will absorb most
of the x-ray and will let a very small amount of it pass
through. The thickness of the tissue is also another factor
for attenuation.

The computational job is the following: For each slice, having to hand the profiles (the arrays
of detector readings), each taken at a different angle, is it possible to reconstruct the tissue lay out
(that would give rise to such detector readings)? The answer is yes. This process is called back
projection, and starting with the data of the profiles, reconstructs the two-dimensional image of
the ”slice” that was scanned.

The PPM Digital Image Format

Digital images are stored in a variety of ways. One way is to consider the image as a two
dimensional matrix. Such images are called raster images. In a raster image each matrix element
is holding a visual information (color/gray level/black or white info) which is called a pixel
value. If an image is represented by a W ×H matrix, then the matrix element19 at (i, j) is in hold
of the visual information of a rectangle which is placed j down, and i to the right of the top-left
corner of the image. The small rectangle which is generated from a single matrix element is a
pixel of the image. A pixel has only a single visual information.

The visual information is a color encoding for a color image; a gray level value (degree of
grayness) for a b/w image where gray tones are allowed; or a binary (0/1) information for a
b/w (no gray tones allowed) image.

There exist various color encodings. One is RGB another is CMYK (others exist as well). Al-
most all of the encodings are based on the same idea of simulating a color by a linear combina-
tion of some fixed colors (frequencies). This can be done because the eye can be tricked as far as
colors are concerned. An eye perceive such a combination of colors as some single color (some
frequency on the spectrum).

RGB refers to the primary colors of light, Red, Green and Blue, that are used in monitors,
television screens, digital cameras and scanners. CMYK refers to the primary colors of pigment:
Cyan, Magenta, Yellow, and Black. These are the inks used on the press in “4-color process
printing”, commonly referred to as “full color printing”.

Let us return to the subject of the formats to store raster images. You are probably aware
of a variety of such formats. Files, in hold of digital images, bear file extensions that indicate
the format the digital image is stored in. Among them you may recall JPG, BMP, TIF, GIF, PPM
and may be some others. Some of these also incorporate compression mechanisms designed for
images.

19assuming the indexing start a 0

Copyright ©Göktürk Üçoluk 2009

166 CT IMAGING - I (Radon Transform)

In this homework and the next one you will be dealing with the plain PPM (ASCII) format.
PPM is the abbreviation of “portable pixmap”. Plain PPM has a very simple structure lay out:

• It starts with the ASCII codes ’P’ and ’3’ (this “P3” is called the magic number: a kind
of signature that tells this is a “Plain PPM” format)

• Whitespace (any number (≥ 1) of blanks, TABs, CRs, LFs).

• A width W , formatted as ASCII characters in decimal.

• Whitespace.

• A height H , again in ASCII decimal.

• Whitespace.

• The maximum color-component value, again in ASCII decimal.

• Whitespace.

• W × H many pixels, each three ASCII decimal values between 0 and the specified max-
imum color-component value, starting at the top-left corner of the image, proceeding in
normal English reading order. The three values for each pixel represent red, green, and
blue, respectively; a value of 0 means that color is off, and the maximum value means that
color is maxxed out.

• Characters from a ’#’ to the next end-of-line are ignored (comments).

• No line should be longer than 70 characters.

Here follows an example

P3
#An example image data in ppm format enjoy it.
4 4
15

0 0 0 0 0 0 0 0 0 15 0 15
0 0 0 0 15 7 0 0 0 0 0 0
0 0 0 0 0 0 0 15 7 0 0 0

15 0 15 0 0 0 0 0 0 0 0 0

For this homework additional simplifying restrictions over the PPM inputs will exist. These are
explained in the ‘Specifications’ section.

Copyright ©Göktürk Üçoluk 2009

CT IMAGING - I (Radon Transform) 167

Problem

In this homework you will be preparing some simulation
data which would actually be provided by the CT device.
You will be starting with a 2-dim slice image (something
like the one on the right), which will be provided to you
in PPM format, then from this you will calculate what the
detectors would record. In the the next homework (HW2),
you will start with the outcomes of the detectors, and re-
construct the original slice image.

As pictured and explained in the previous section, in real
life the x-ray source is a point source. So the rays emitted
from the source is like in the figure to the right. This case,
where the beams diverge, is called fan-out. To deal with the
math of fan-out is difficult to some extend. Instead of this
a parallel beam formation is assumed. Actually, it is possi-
ble, mathematically, to convert between these two. We will
though, not look at this conversion, and do all the calcula-
tions based on the parallel beam assumption.

source

detector

rotation

rotation

object

The figure below displays this parallel beam formation:

source

detector

rotation

rotation

object

Copyright ©Göktürk Üçoluk 2009

168 CT IMAGING - I (Radon Transform)

Furthermore we will safely assume that the detectors are located on the increasing side of
the y-axis. So, pictorially presented the problem is:

x

y

θ
s

s

g(s
, θ)

u

object

pr
ofi

le

0
g(0

, θ
)

s

You can read this figure as:

When the parallel beams make an angle of θ with the x-axis, then the detector at s
reads an x-ray intensity of g(s, θ).

Of course, since the detectors are not infinitesimal and are not located every where on the s-axis,
the g(s, θ) is not such a nice, continuous curve, but is defined only at some points (at points
where a detector is located).

You will be given an input image from the standard input that complies with the PPM for-
mat. You shall assume that the origin is at the midpoint of this image. The first line of this input
will be a comment in the PPM format (it will start with the ’#’ in the first position of the line),
this line will contain the information of how many profiles is to be computed (N) and how many
data points will exist in a profile (M). The data point count M there are equal number of data
points where s < 0 and s ≥ 0. The first profile corresponds to the angle (θ = 0◦). Two adjacent
profiles will have an angle difference of 180◦/N .

The output consists of N + 1 lines where the first one is holding the dimensions (M and
N) and each of the following N lines is corresponding to a profile where these lines are in the
increasing angle order.

A profile taken at the angle θ is a function of s denoted by g(s, θ) which is the sum of the
intensity values of the given image along the line that is at a distance s from the origin and
makes an angle θ with the y-axis (please refer to the figure above for a better grasp of the idea).

Copyright ©Göktürk Üçoluk 2009

CT IMAGING - I (Radon Transform) 169

Specifications

• Input is an image in PPM format. Where the first line contains the “P3” text and the
second line is of the form
N
The image itself will be at most 700 × 700. The height of the image is less or equal the
width of the image. The N value will be < 700. M , the count of data point (detector)
positions for a projection, will be 2× 〈Width of the image〉.
The image that you are going to deal with will be a gray image, in other words all R,G,B
values of a pixel will be equal. For the calculation of g(s, θ) values you can consider only
one of the three as intensity value. This value will allways fit into a 2 byte unsigned int.
(The redundancy is due to the PPM format: PPM does not provide a variant for monochromatic
images)

• The input will not contain any other comment line. Furthermore you can safely assume
that the input is error-free. Hence, Do not perform any error check of the input.

• The output consists of N + 1 lines. The first line contains M followed by N , seperated
by one blank. Starting with the next line each following line will have exactly M long
numbers separated by one blank. The first long is the value of g(0, θ), followed by
(M − 1)/2 data values of g(s, θ) where s > 0 (in increasing s order) which is then fol-
lowed by another (M − 1)/2 that correspond to data values of g(s, θ) where s < 0 (in
increasing s order).
(No, it is not a misprint: first the data on the positive s-axis and then the negative s-axis. This is
required for the mathematical technique that will be made use of in the second homework)

• While forming a profile taken at the angle θ, consider all pixels of the image one by one.
For each pixel, find the nearest line on which the summation is taken and increment that
line’s summation by the pixel value (one of the R,G,B values –remember all are equal).

• Pixels are square. Furthermore the distance between two adjacent detectors is exactly one
pixel. That means for example for theta = 0◦ adjacent pixels with the same y value will be
detected by adjacent detectors. The distance between two adjacent detectors is fixed (does
not vary with the change in θ) .

• The item above is describing a simple but privitive projection method. This has some
drawbacks. The greatest trouble is along the θ = 45◦ and θ = 135◦. These are the [N/4]
and [3×N/4] lines (assuming the line count starts at 0). Replace the content of these lines
by the next line following them (Don’t skip those two lines: the total count of lines shall
still be N).

Hints

• You can easily visualize the PPM format by using one of the display , krita or gimp
programs. There is a bunch of other visualizers as well.

• The math.h library contains all the trigonometric functions like sin , cos , etc. Further-
more, the π constant is also defined as a macro with the name M_PI. The functions of
math.h are located in a library which is not auto-linked. You have to include the link by
an -lm command line argument to the gcc (compiler+linker).

Copyright ©Göktürk Üçoluk 2009

170 CT IMAGING - I (Radon Transform)

• If ξ is a positive floating point value, the nearest integer value can be found by
(int)(ξ+0.5) . Give a thought on this and understand why it works, then determine
the formula that will give the nearest integer if ξ is negative. You may need this!

• Consider the angles you are taking sin and cos ’s of. How many times do you calculate
the same trigonometric function of the same angle? These function calls are quite time
consuming. Can you thing of a trick to speed up the calculation?

Copyright ©Göktürk Üçoluk 2009

CT IMAGING - II (Inverse Radon Transform) 171

42 CT IMAGING - II (Inverse Radon Transform)’06 HOMEWORK 2

Introduction

We carry on in the computational aspects of CT. This time we will start with the output of ’06
Homework 1, which is actually called the Radon transformation and normally provided by the
hardware of the CT device, and calculate the spatial distribution that would give that Radon
transform. Practically what we will do is

1. Take the 1-dim Fourier transform of each line of the radon transformation (output of HW1)

2. Rearrange the transformed lines

3. Take a 2-dim inverse Fourier transform of all the matrix that is made of these lines.

4. Discover and apply a very simple pull-back transformation to reconstruct the single image
from 4 scattered pieces.

Theoretical background

Radon transformation

Assume the spatial distribution was f(x, y). In the previous homework you have calculated the
integral

g(s, θ) =

∫

∀(x,y)∈Lθ,s

f(x, y)

Where Lθ,s is the line that makes an angle θ with the x-axis and passes at a distance s from the
origin.

You have calculated this integral (sum), for discrete θ and s values and made a table out of
them (where a line was corresponding to a fixed θ value).

You might have realized that what you have done is nothing else but:

g(s, θ) =

∫ ∞

−∞
f(s cos θ − u sin θ, s sin θ + u cos θ)du

The right hand side is called the Radon transformation of f(x, y).

Fourier transform

The 1-D (one dimensional) Fourier transform of g(s, θ) in the s direction (over the variable s) is
defined as usual to be:

ĝ(, ρ, θ) =

∫ d

−d
g(s, θ) e−2πiρsds (4)

i is the imaginary unity (
√
−1). Please note that, though g(s, θ) is a pure real function, ĝ(ρ, θ) is

complex. So, is actually of the form ĝ = Re(g) + Im(g) · i
In the same manner the 2-D (two dimensional) Fourier transform of f(x, y) is:

f̂(ξ, η) =

∫ c

−c

∫ c

−c
f(x, y) e−2πi(ξx+ηy) dx dy (5)

A simple relation between f̂(ξ, η) and ĝ(ρ, θ) is provided: The Slice Theorem

Copyright ©Göktürk Üçoluk 2009

172 CT IMAGING - II (Inverse Radon Transform)

The Slice Theorem

Let ĝ(ρ, θ) be the s-Fourier transform (4) of the Radon transform g(s, θ), and let f̂(ξ, η) be the 2-D
Fourier transform (5) of the image function f(x, y). Then

ĝ(ρ, θ) = f̂(ρ cos θ, ρ sin θ) (6)

This can be rewritten as

f̂(ξ, η) = ĝ

(√

ξ2 + η2, tan−1
(

η

ξ

))

(7)

Fourier transformation is invertible. There exist a inverse Fourier transform operation. The
inverse, in particular, for (5) is:

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
f̂(ξ, η) e2πi(ξx+ηy) dξ dη (8)

So, combining (6), (7) and (8) we have an algorithm to obtain the inverse of a Radon transforma-
tion.

Problem

You start with the output of HW1, namely the Radon transformation of an image. You are pro-
vided with external functions that take 1-D, 2-D Fourier transformations and inverse of them.
Implement the algorithm described below and implement it, given a library for Fourier trans-
formation, according to the specifications that follow.

The Algorithm

1. Read in the output of HW1. Below, M and N has the same semantics as in HW1.

2. Take the 1-D Fourier transform of each line of the radon transformation (output of HW1).
Store these values into a matrix row by row. So you have to hand ĝ at certain θ and ρ
values. You are going to use them in the next step.
(Attention: the first index of this matrix run in the range [0, N − 1]. As you will recall, the nth

line of this matrix is holding the information that corresponds to the angle θ = nπ/N .)

3. Set up a matrix (2 Dimensional array) of dimension (M ×M). This matrix will be holding
the f̂(ξ, η) values obtained by means of (7) (note ĝ values are obtained in the previous
step!) Since matrices cannot have negative indices you have to shift all values linearly
so that the ĝ calculated for ξ = −M/2 and η = −M/2 shall go into the matrix element
[0][0] and ĝ calculated for ξ = +M/2 and η = +M/2 shall go into the matrix element
[M − 1][M − 1] .

If any calculated θ value (the second argument of ĝ in (7)) does not satisfying 0 ≤ θ < π or
any calculated ρ value (the first argument of ĝ in (7)) does not satisfying 0 ≤ ρ ≤M set the
corresponding matrix element to 0 (zero).

As you have guessed, the scan over all possible ξ values is done in the range [−M/2,+M/2]
and the scan over all possible η values is done in the range [−M/2,+M/2].

4. Take a 2-dim inverse Fourier transform of this matrix.

Copyright ©Göktürk Üçoluk 2009

CT IMAGING - II (Inverse Radon Transform) 173

5. Discover and apply a very simple pull-back transformation to reconstruct the single image
from four scattered pieces. (To do this output the image prior to this step and inspect what
is going on)

6. Output this ’pulled together’ M/2 ×M/2 image (you will understand what ’pulled to-
gether’ means when you have done the previous step) in PPM format.

Specifications & Hints

• Input is from standard input, output is to standard output.

• You are provided with the binary code for Linux of two functions that do Fourier Trans-
formations (and the inverse) for 1-D and 2-D, respectively.

Due to the Fast Fourier technique this functions are using (why this is so is out of our
scope), the dimension of the arrays have to be a power of 2. There are various ways to
overcome this restriction, but we will stick to the simplest one and restrict our M values to
be a power of 2 only. In this homework, you can assume that M ∈ {16, 32, 64, 128, 256, 512}
and nothing else.

• The header information for the functions is stored in fourier.h , and is obtainable from
the same place where the binary is.
(Observe course news group and/or course web page for the link to this place.)

Function descriptions:

fft 1d(void *data, int nn, int isign)
Replaces content pointed by data by its one-dimensional discrete Fourier transform
if isign =1 or replaces content pointed by data by its inverse transform if isign =-1 .

data shall point to the first element of a complex array with nn elements. nn and mm
have to be integer powers of 2. Failing to do so will cause the function to abort and
return a #define constant that has the name INVALID .

The complex type can be defined as:
typedef struct {float re,im;} complex;

fft 2d(void *data, int nn, int mm, int isign)
Replaces content pointed by data by its two-dimensional discrete Fourier transform
if isign =1 or replaces content pointed by data by its inverse transform if isign =-1 .

data shall point to the first element of a complex array with mm × nn elements. nn
has to be an integer power of 2. Failing to do so will cause the function to abort and
return a #define constant that has the name INVALID . The memory organization
of these mm× nn elements have to as follows:

complex

complex

complex

complex

complex

data[0][0]
data[0][1]

data[0][nn−1]
data[1][0]

data[mm−1][nn−1]

Copyright ©Göktürk Üçoluk 2009

174 CT IMAGING - II (Inverse Radon Transform)

Here you have an implementation problem: Since ANSI-C does not allow variable
sized multidim arrays, unfortunately, you have to store the 2-D information into a
1-D array with the semantics above.
(The best way to do this is to write a macro to access this 1-D array elements by means of the
2-D index information)

(Attention: In both of these functions, the content pointed by data gets replaced by the transfor-
mation.)

• In the 2. step of the algorithm, the 1-D complex array will have its .im subfields zeroed
out. After the transformation call, these fields may contain non zero values (usually they
will). Therefore, when you are constructing the 2-D matrix, in the 3. step of the algorithm,
make sure that the assignment is of complex type.

After 4. step (the completion of inverse 2-D Fourier T.), you do not have to consider the
.im part of the information. This is irrelevant in constructing the PPM image. Use only
the absolute value of .re part. Furthermore, these values can be quite large, so if you
switch to integer representation, while constructing the PPM information, don’t forget to
use long .

• If you have stored the object file that contains the functions fft 1d and fft 2d under
the name fourier.o and furthermore, with the assumption that you also need the math
library, you will be compiling & linking by the command line:

gcc hw2.c fourier.o -o hw1 -lm

• You can assume that the input is error free, and complies with the specifications of the
previous homework if not superseded by the specifications of this homework.

• Make use of atan2() and not atan()

Copyright ©Göktürk Üçoluk 2009

FUZZY SET ALGEBRA 175

43 FUZZY SET ALGEBRA ’06 HOMEWORK 3

Introduction

Fuzzy Set Theory is introduced by Lotfi Zadeh in 1965 to deal with the description of imprecise,
vogue notions. In the classical set theory (so called as crisp set theory) an element is either a
member of a set or not. This is no more so when you are dealing with fuzzy sets. That is to say
that:

• “an element belongs to a set” becomes a fuzzy concept;

• the concept of membership is quantified.

In other words the key idea in fuzzy set theory is that an element has a grade of membership in
a fuzzy set.

We usually assume A is a fuzzy set in the universe of discourse Ω. For any x ∈ Ω, the grade
of membership µ of x, which definitely belongs to A, is 1, whereas the grade of membership µ of
x, which does not belong to A absolutely, is 0. Apart from these cases, the grade of membership
of an x, which partly belongs to A, is in the interval [0, 1].

Consider the fuzzy set labeled adolescent (person undergoing puberty stage; Turkish: er-
gen). Let us consider the elements are male human ages, and their grades of membership de-
pend on their ages. For example, a man who is 60 years old might have degree 0, a man who
is 12 years old might have degree 1, and a man of age 16 will have some intermediate grade. A
possible representation could be:

Age Grade of membership

(x) (µ)

≤7 0
8 0.5
9 0.8

10 0.9
11 1.0
12 1.0
13 1.0
14 0.8
15 0.5
16 0.3
17 0.2
18 0.1
≥19 0

There are various denotational representations used to denote fuzzy sets. We will be represent-
ing the fuzzy set example of above as:

{8 : 0.5, 9 : 0.8, 10 : 0.9, 11 : 1.0, 12 : 1.0, 13 : 1.0, 14 : 0.8, 15 : 0.5, 16 : 0.3, 17 : 0.2, 18 : 0.1}

In this homework we will be dealing with finite sets, only.

Copyright ©Göktürk Üçoluk 2009

176 FUZZY SET ALGEBRA

As in the classical set theory, there are three basic operations defined on fuzzy sets:

• Union (∪) : µA∪B(x) = max{µA(x), µB(x)}, x ∈ Ω
• Intersection (∩) : µA∩B(x) = min{µA(x), µB(x)}, x ∈ Ω
• Complement (¬): µ¬A(x) = 1− µA(x), x ∈ Ω

Here follows an example:

Let Ω = {x1, x2, x3, x4, x5}
A = {x1 : 0.8, x2 : 0.2, x3 : 0.1, x4 : 0.4, x5 : 0.7}
B = {x1 : 0.2, x2 : 0.4, x4 : 0.6, x5 : 0.9}

Then A ∪B = {x1 : 0.8, x2 : 0.4, x3 : 0.1, x4 : 0.6, x5 : 0.9}
A ∩B = {x1 : 0.2, x2 : 0.2, x4 : 0.4, x5 : 0.7}
¬A = {x1 : 0.2, x2 : 0.8, x3 : 0.9, x4 : 0.6, x5 : 0.3}
¬B = {x1 : 0.8, x2 : 0.6, x3 : 1.0, x4 : 0.4, x5 : 0.1}

Problem

You will be writing a program that acts as a fuzzy set algebra interpreter. It will be able to:

• Define a universe (Ω of the above example).

• Assign fuzzy sets as values to variables.

• Calculate any combination of the above given set operations and obtain new fuzzy set
values.

• For each input calculate corresponding fuzzy set and output it; then continue with the
next input until end-of-file is input.

An input is defined as:

〈input〉 ::= 〈end of file〉 |
〈expression〉 |
= 〈variable〉 〈value〉 |
universe{ 〈name list〉 }

〈expression〉 ::= 〈set〉 |
〈variable〉 |
(〈expression〉 〈infix operator〉 〈expression〉) |
- 〈expression〉

〈set〉 ::= {} |
{ 〈element list〉 }

〈value〉 ::= 〈expression〉
〈variable〉 ::= 〈identifier〉

〈element list〉 ::= 〈element〉 | 〈element〉 , 〈element list〉
〈element〉 ::= 〈name〉 : 〈grade〉
〈name list〉 ::= 〈name〉 |

〈name〉 , 〈name list〉

Copyright ©Göktürk Üçoluk 2009

FUZZY SET ALGEBRA 177

〈name〉 ::= 〈identifier〉
〈grade〉 ::= 〈non zero, positive floating point number of C language that is less or equal to 1〉

〈infix operator〉 ::= | | &
〈identifier〉 ::= 〈letter〉 〈alphanum tail〉

〈alphanum tail〉 ::= 〈letter〉 〈alphanum tail〉 | 〈digit〉 〈alphanum tail〉 | ε
〈letter〉 ::= A | B | . . . | Z | a | b | . . . | z
〈digit〉 ::= 0 | 1 | . . . | 9

• Except in 〈identifier〉 or 〈floating point number of C language〉 whitespaces can appear
anywhere, and will be ignored.

• ‘| ’ is the union operator

• ‘&’ is the intersection operator

• ‘- ’ is the complement operator

• All 〈expression〉s will be evaluated according to the semantics described in the introduc-
tion section.

• The 〈value〉 in the assignment is first evaluated and then assigned to the 〈variable〉.

• The information provided by universe is actually necessary only for the complement
operation. But we restrict it to be defined prior to any other input. So, the first input is
the universe definition. It is allowed to redefine the universe , but it will have a side
effect of clearing all variables (and their values). So any error-free input will not refer to
the assigned values above the last universe .

• Any 〈expression〉 of the form of 〈variable〉 will be replaced by the 〈value〉 that was prior
assigned to it. In case of multiple assignments in time, the last one counts.

• The 〈identifier〉 universe cannot be used as a variable.

• Be aware that:

– There is no terminator character (like semicolon etc.) for a single input (you do not
need it).

– Assignment is not an expression and cannot be a part of an expression (unlike it is in
C). Though when you input an assignment the value printed is the assigned set.

– Infix operator expressions are always enclosed in parenthesis. Parenthesis cannot be
used freely (ie. one pair of parenthesis per infix operator, no more no less).

– A 〈name〉 and a 〈variable〉 can be represented by the same 〈identifier〉. This does not
imply that 〈name〉will be substituted by the value of the 〈variable〉, this would make
no sense at all.

– Since end-of-lines are among whitespaces it is possible that an input is scattered over
several lines.

– There is no limit on the count of 〈element〉s in a set nor a limit on the cardinality
(size) except that it can be represented by an int (on Linux).

Copyright ©Göktürk Üçoluk 2009

178 FUZZY SET ALGEBRA

– There is a limit on the count of 〈variable〉s (see specification).

– Empty set is perfectly valid. It is {}.
– universe cannot be empty.

– In this denotation, expressed as BNF, elements with zero grades are not included in
the set representation. You are expected to comply with this!

– There is no order imposed on the elements of a 〈set〉.

Specification

• Input is from stdin , output is to stdout . End-of-file quits the program. You do not have
to bother to free the dynamic memories allocated during the run when you encounter the
end-of-file. The task manager of your operating system will take care of them.

• Your program will loop through a read-eval-print loop. (like the scheme interpreter). The
read input is of the syntax defined above in BNF notation. Except for the universe input
the output complies with the 〈set〉 definition but is prefixed with the string “VALUE: ”
(see example below) and is terminated by end-of-line (Note that there is one blank printed
between VALUE: and the 〈set〉 that follows). For the universe input the corresponding
output is a line that starts with the string “CARDINALITY: ” and is followed by an integer
that is the cardinality (count of elements) of the universe .

Every output is terminated by a end-of-line. In your output do not add any other whites-
pace except those defined here.

• The input will be error free. You do not have to perform any error check (The solution
provided by us does extensive error checking and generate error messages. This is for
educational purpose only. You do not have to implement those features).

• You do have to free the memories that you have used and are no more in use during the
run. In other words, during a run, from an input processing to another input processing
the only increment in your memory consumption shall be either

– due to the new variables and their values or

– due to changes in the values of old variables or

– due to (re)definition of universe .

So, if the input does not make an assignment or (re)defines the universe , the memory
after the input is processed has to remain the same. (Do not misunderstand this: during
your evaluation process you are free to allocate/deallocate memory as you wish).

• Maximum number of variables, that can be defined, is 100. You are allowed to store them
in a compile time defined array. We suggest that the elements that hold the information
associated to an variable are of the form of a struct ure, with two pointer fields, one of
which is pointing to the name of the variable, the other to the the internal set representa-
tion (of value).

• Maximum length of a variable is 1000 characters. But you are no allowed to make a pre-
allocation for this. The memories for the variable names have to be allocated dynamically
of the minimum size (that allows the accommodation of the name).

Copyright ©Göktürk Üçoluk 2009

FUZZY SET ALGEBRA 179

Hints and How-to-do’s

• To represent the sets use a dynamic array data structure with struct ure elements that
hold the grade information and a pointer to the name string.

• Write a recursive-descent-parser based on the idea of the lab4 assignment. Do not attempt

to implement Dijkstra’s algorithm. Absolutely you do not need it.

• It is a good idea to write a tokenizer function that when called will return the next token
in line. for example if your input is

(-A | (BahriDayi &{Keltosali : 0.2 ,kirk9eli:0.7}))

your tokenizer function shall return

1.call: (7.call: & 13.call: ,
2.call: - 8.call: { 14.call: kirk9elli
3.call: A 9.call: Keltosali 15.call: :
4.call: | 10.call: : 16.call: 0.7
5.call: (11.call: 0.2 17.call: }
6.call: BahriDayi 12.call: 18.call:)

19.call:)

It is quite common that such a tokenizer function also analyzes the token and provides
an information about the nature of the token (eg. number, identifier, delimiter, etc.). The
findings! of the tokenizer are usually returned in some global variables.

• When you have to grow a dynamic array, do not grow it by one element. That is extremely
inefficient (memory manager wise) and time consuming. Grow in some multiple count of
elements, later when you are all done and no more elements are going to be added, trim
the unused part by a realloc . Do not exaggerate this and grasp extremely big chunks
prior to usage. That is also killing the memory manager. You have to do this in a balanced
way. Chunks of 50-100 elements is quite normal.

• Use #define macros to access subfields of struct ures you have defined. Especially do
so if you access the structures by means of pointers.

• It would be wise for you to consider the anthology of ANSI string functions, as well as the
is . . . functions. Furthermore, we believe that ungetc() is quite useful.

Example

Below you are given a sample dialog with the hw3 program. As specified in the specification,
lines that start with VALUE: are output lines. All other are input. Whitespaces in the input could
have been arbitrarily changed.

universe { x1, x2, x3,x4, x5}
CARDINALITY: 5
= A { x1:0.8, x2:0.2, x3:0.1, x4:0.4, x5:0.7 }
VALUE: {x1:0.800000,x2:0.200000,x3:0.100000,x4:0.400 000,x5:0.700000}
= B { x1:0.2, x2:0.4, x4:0.6, x5:0.9 }

Copyright ©Göktürk Üçoluk 2009

180 FUZZY SET ALGEBRA

VALUE: {x1:0.200000,x2:0.400000,x4:0.600000,x5:0.900 000}
(A & B)
VALUE: {x1:0.200000,x2:0.200000,x4:0.400000,x5:0.700 000}
(A | B)
VALUE: {x1:0.800000,x2:0.400000,x3:0.100000,x4:0.600 000,x5:0.900000}
-A
VALUE: {x1:0.200000,x2:0.800000,x3:0.900000,x4:0.600 000,x5:0.300000}
-B
VALUE: {x1:0.800000,x2:0.600000,x3:1.000000,x4:0.400 000,x5:0.100000}
(-A | (A & -B))
VALUE: {x1:0.800000,x2:0.800000,x3:0.900000,x4:0.600 000,x5:0.300000}
universe {ali,veli,cafer}
CARDINALITY: 3
= A { ali:0.9, cafer:0.75 }
VALUE: {ali:0.900000,cafer:0.750000}
-A
VALUE: {ali:0.100000,veli:1.000000,cafer:0.250000}
{veli:0.5,cafer:0.25}
VALUE: {veli:0.500000,cafer:0.250000}
(A | -{veli:0.45,cafer:0.35})
VALUE: {ali:1.000000,cafer:0.750000,veli:0.550000}
-{}
VALUE: {ali:1.000000,veli:1.000000,cafer:1.000000}

Copyright ©Göktürk Üçoluk 2009

ZERMELO NAVIGATION PROBLEM 181

44 ZERMELO NAVIGATION PROBLEM ’07 HOMEWORK 1

Introduction

The first is about a simplified version of the so called Zermelo Navigation Problem, discussed by
E. Zermelo in 1931.

The problem is optimizing the crossing of a river with a boat that has a maximal velocity
with respect to the river current. The hardness of the problem heavily varies depending on the
non uniformity of the speed of the river.

In our simplified version:

• The banks of the river are parallel.

• The line joining the start and end points of the route is perpendicular to the river bank.

• The boat will strictly travel on this line.

• The magnitude of the current in the river may vary but is strictly parallel to the banks at
every point. The sense of the current may change.

Problem

The purpose is to calculate the time of travel from start to end.

You will be given the magnitude of the current at several points on the crossing line. To do
a proper calculation you need to interpolate this knowledge to any point on the line. This will be
done by non-uniform quadratic spline interpolation. After this process you will have a function to
hand that provides the magnitude of the current at any point on the crossing line. How to do
quadratic interpolation is explained in the relevant subsection below.

The boat velocity (with respect to the current) is of a fixed magnitude and will be given to
you. The direction of this constant magnitude vector is altered (at every point, by the navigator)
so that the velocity component in the direction of the current will cancel the current out. This,
naturally, will have an effect of a reduced velocity in the direction of the crossing line. As greater
the current gets the boat will turn towards the current and cancel out its effect. It is assured that
the magnitude of the current will always remain smaller then the magnitude of the velocity of
the boat. So, the boat will never stop on the crossing line.

Copyright ©Göktürk Üçoluk 2009

182 ZERMELO NAVIGATION PROBLEM

xxx x x x x x x0 x 3 4 5 71 2 6

y

c u r r e n t

0 R
START END

The figure on the left pictures the trajectory
of the boat. The coordinate system is defined
to have its origin at the start point and the x-
axis passing through the end point. The end
point’s position on the x-axis will be given as
a positive number as one of the input param-
eters. The y axis coincides with the starting
bank. Though the example figure have all its
currents in the positive y direction, this has not
to be so, it is possible that the current changes
sense (that means it becomes negative) at sev-
eral points on the crossing line.
Since the actual current values are only given
at a restricted number of points on the x-axis,
when we need to have the value for a point

which is in between, some intelligent guess has to be made. So, for example, if the current
value at a point p which is between x3 and x4 is needed then an intelligent guess (we call this
interpolation) could be the assumption of a linear relation that runs from x3 to x4. Making this
assumption we can calculate a value for the point p, based on the distance p is located from x3

and x4. This type of a linearity assumption has its problems. The main problem is about the con-
tinuity of the derivative. At the actual points xi (at which values are given) the slope of the curve
will be undefined and this is far from reality. A better approach is to assume that the relation
is not linear but quadratic. So, we have the chance to equate and have a single slope when we
approach a ‘known’ point from left and right. All this is done ages ago and we have a computa-
tional technique (which is explained below in its relevant subsection) that gives as a smooth and
nice behaving function current(x) when we feed in the xi values and the current(xi) values.
Now, let us have a closer look at how the boat proceed from one bank to the other. Since, we are
working in a digitized environment physical quantities have to be discretized. Among this is the
time domain. In our problem we will consider the events followed by small (but not infinitesi-
mal) time increments. Let us call this time step ∆t. This time step ∆t will be given as an input
parameter of the problem. During each ∆t interval all varying parameters remain constant. The
laws of Physics provide the new position and speed of the boat that will hold for the next time
step. Actually, this is not far from reality. In the theory of Physics, this ∆t is taken to the limit
of 0 (zero), and mathematics provides the analytic relations of the dynamics. We will not follow
this route, and will not cook up our results analytically (i.e. we will not compute a ‘formula’
that will give us the total time of travel) but merely do a computation that walks through all the
event (the event where the boat starts on one bank, and ends at the other) by ∆t time increments.
We start the ‘simulation’ at x = 0 with t = 0 and stop it when x = R (R is the river width). The
answer of the problem is what value the t (time) mark has reached at the stop moment.

Copyright ©Göktürk Üçoluk 2009

ZERMELO NAVIGATION PROBLEM 183

At each time instance the boat is at a new
position x. Depending on this position, the in-
terpolation provides you with a value for the
current. Since, it is said to be so, the boat nav-
igator orients the boat so that the effect of the
current is canceled by the y component of the
boats speed vector (to make the decision and
reorient the boat takes no time). You have a
fixed magnitude for the boat velocity vector.
This implies that you have a well computable
x component of the velocity (vx). The boat will
travel exactly an amount of ∆x = vx ×∆t. So,
after this ∆t time has passed, the new position
of the boat is ∆x to the right of its former po-
sition. You have to repeat this loop until you

x

y

x
v

vx

y v

current(x)

ENDSTART

reach x = R where you have reached the other bank. At this point you output the time accumu-
lated and stop your program.

Non-uniform quadratic spline interpolation

[Adapted from ‘Spline interpolation’ on Wikipedia]
Given are n + 1 distinct knots xi such that

x0 < x1 < x2 < · · · xn−1 < xn

and n + 1 knot values currenti. The aim is to provide a function current(x) that has

current(xi) = currenti ∀ xi (knots)

and

current(x) =

S0(x) x ∈ [x0, x1]
S1(x) x ∈ [x1, x2]
...

...
Sn−1(x) x ∈ [xn−1, xn]

The quadratic spline is constructed as

Si(x) = currenti + αi(x− xi) +
αi+1 − αi

2(xi+1 − xi)
(x− xi)

2

The coefficients can be found (one by one) by

αi+1 = −αi + 2
currenti+1 − currenti

xi+1 − xi

The first coefficient α0 is supposed to be taken as α0 = 0.

(A short note about the name of the procedure: ‘Non-uniform’ means the distance between the suc-
cessive knots is not fixed. ‘Quadratic’ means the Si(x) are polynomials of second degree. ‘Spline’ means,
that the interpolation is a juxtaposition of more then one functions.)

Copyright ©Göktürk Üçoluk 2009

184 ZERMELO NAVIGATION PROBLEM

Specifications

• Input starts with two lines:

First line: ∆t |~v| (both are double , separated by at least one blank)
Second line: n (a positive integer in the range [3,100])

The following n + 1 lines contain the xi value followed by the currenti information (both
are double , separated by at least one blank) :

0 current0
x1 current1
x2 current2
...

...
xn−1 currentn−1

R currentn

As you have observed, the first line of this information starts with 0 (zero), that is the value
of x0, and the last line starts with R, which is the value of xn. This (the positions of x0 and
xn) will be so for all our inputs. Needless to say, there is no restriction on the remaining xi

values except that they will in an increasing order.

• No need to do an error check the input. We will not use erroneous input in evaluation.
Furthermore, no nonsense input will be given (eg. a ∆t >Total time!)

• The output is going to be a single double number. The total time the boat will take to
reach the other side of the bank assuming the departure time as 0. There is a tolerance in
the output and it can deviate ±∆t. Any result that falls in this range will get full grade.

• We do not mention any units, since all the input/output are full compatible. The velocities,
distances, and the time are all given in compatible units. You do not have to convert them
to any other unit or multiple of a unit.

• The header information for all the mathematical functions (like sqrt , or any trigono-
metric function) present in Ansi C is located in math.h . This library is not auto-linked.
You have to tell the linker about it by an -lm command line argument to the gcc (com-
piler+linker).

• For any floating point value to be stored use double variables.

• Though mathematically current(x) is a function, it does not have to be coded as a C func-
tion. Simply calculate the value from the formula when you need it. Actually, there is no
need to code any C function except main() in this homework.

• In no way beautify your output. The output is a single double number and that is all.
Your programs will be checked by an evaluator program. Any other output will lead to a
misevaluation.

Copyright ©Göktürk Üçoluk 2009

WHAT LANGUAGE? 185

45 WHAT LANGUAGE? ’08 THE 1

Introduction

This problem is about identifying a text language. A human approach to this problem could
be an attempt to spot well known and frequently used words form languages. So a use of ’the’
would imply ’english’, a use of ’avec’ would imply ’french’ etc.

Our approach will be totally different. We will be making use of the computers ability to
process data in huge amount. The concept that we will employ is called ’bigrams’. In general
n-gram is the grouping of n many entities in a neighborhood. A bigram is the neighborhood of
two entities. In our case ‘entities’ are letters and some punctuation characters and neighborhood
means “being followed by” (in a word). So for example in the word “ATTRIBUTED” (considering
also the surrounding spaces as letters ‘ ’) Has the following bigrams:

A, AT, TT, TR, RI , IB , BU, UT, TE, ED, D

The frequency of bigrams differ from language to language. So bigram frequency can be consid-
ered as a signature of the language. Of course to be conclusive the amount of the text analyzed
must be large. Just as an example (taken from www.cryptograms.org/letter-frequencies.php) The
most often occurring bigrams and their frequency percentage (%) in English is

TH 3.88 HE 3.68 IN 2.28
ER 2.18 AN 2.14 RE 1.75
ND 1.57 ON 1.42 EN 1.38
AT 1.34 OU 1.29 ED 1.28
HA 1.27 TO 1.17 OR 1.15
IT 1.13 IS 1.11 HI 1.09
ES 1.09 NG 1.05

Problem

In this work you are expected to write a program that reads form the standard input and write to
standard output. You will read a text, character by character, which is a number of corpi (corpi
is the plural of corpus. corpus means a ‘body of text’). Each corpus is a text in a language. There
is no limitation on the size of the corpus. A corpus is made of a sequence of words separated by
single spaces. Words are made of uppercase letters from the English alphabet. How corpi are
separated from each other is detailed in the next section (SPECIFICATIONS). You will count all
bigrams and find the percentage of occurrence. Then, again form the input you will be supplied
with an unknown language where you will identify which language it is most similar to. For
this purpose you need a measure by which you can identify the most similar language. Here we
provide you with a metric of dissimilarity:

dissimilarity(language1, language2) =
∑

ξ∈all bigrams

|Ω(ξ, language1)− Ω(ξ, language2)|

where Ω(ξ, language) is the percentage of occurrence of the bigram ξ in the language.
So, as much as the dissimilarity(language1, language2) value is close to zero, we can con-

clude that these two languages are similar.

Copyright ©Göktürk Üçoluk 2009

186 WHAT LANGUAGE?

Specifications

• There will be at most corpi for 9 languages (except the unknown language).

• Corpi will be separated from each other by a line of the form
#n
where n will be successive integers starting with 1. So, on top of the first corpus is a line
#1
then comes the first corpus (which may contain whitespaces). Then there will be a line
#2
marking the start of the second corpus. The second corpus will follow, and so on.

• Input starts with #1 , continues with the input of all corpi and finishes with a separate line
of a single question mark
?
which is followed with the corpus of the unknown language.

• There can be arbitrary many whitespaces separating words. Consecutive white spaces are
equivalent to a single space ‘ ’.

• In the bigram computation consider ‘ ’ (space) as a letter.

• For bigram counting use long int as type. For percentages use float .

• The output is the number of the language you have determined to be the most similar to
the unknown language. (Yes, it is correct; you will be outputting a single digit number
only!)

• You are not allowed to use functions from string.h . Worse then that, you are not al-
lowed to create strings or make use the string concept. (You actually do not need strings
at all).

• You cannot use pointer variables; the dereference operator. The only allowed ‘pointer of’
operator is the one used in scanf calls.

• You are advised to device a two (actually three: after reading bullet see below) dimen-
sional array of long elements of size m × m where m is the cardinality of the alpha-
bet. Letters’ ASCII codes can be used (subtracting some offset) to index the array. So,
array[’T’- λ][’E’- λ] would hold the count of the bigram TE. What shall λ be? How
can we deal with the space character? Think about it. You have to solve these issues.

• Since you will have more than one corpus it is wise to device a three dimensional array,
indeed, the first index which runs over the language number (so is actually of the size
[10]). The second and the third indices are as explained in the item above (and are both
of size m).

Copyright ©Göktürk Üçoluk 2009

GRAPH MERGING 187

46 GRAPH MERGING ’08 THE 2

Introduction

A graph is a set of vertices and a set of edges each of which run from a vertice to another.
Vertices are labeled. It is also possible that vertices and/or edges have some data attached to
them. Edges can be directed or not. If they have a direction then the graph is called a directed
graph. Having a mathematical theory (Graph Theory), graphs play an enormous important role
in Computer Science. Many problems are modeled by means of graphs. A branch of algorithms
(Algorithmic Graph Theory) is entirely dedicated to deal with graph related problems.

Problem

The problem we will consider is about merging two graphs. You will be supplied with two
arbitrary, weakly connected, directed graphs. (To enrich your terminology about graphs we strongly
encourage you to consult the web. That is part of the education)

The graphs that we will be treating correspond to the ‘friend’ declarations in some social
network (like facebook). In addition there is a supernode (or super vertex) in each of our graphs
so that each other vertex is reachable by a (directed) path starting at this supernode. This node
will be provided to you. Furthermore there will be no more then one edge (with the same
direction) running among a pair of vertices. Also, for our edges the start and the end vertices
are different, per se.

The job is simple, you are given a data representation for this kind of a graph so that the
graph is uniquely represented (this representation will be explained below). You are expected
to write a function which takes two arguments, each of which is a pointer to the supernode of a
graph of the above defined nature. The data representation is so that when you have access to
the supernode all graph is accessible.

The label of the second argument supernode is also a label of a vertex of the graph reachable
by the first argument supernode. Furthermore it is possible that the two graphs have other
common labels in their vertices.

The task is to merge the two graphs together (over common labels) to form a single graph.
You will do the merging by constructing a brand new data structure and returning the pointer
to its supernode.

Now let us have an example (supernodes are in red) :

sertac

sacit

burhan

sahika

makbule

makbule

burhan

asli

cemosman

sahika

GRAPH1 GRAPH2

Copyright ©Göktürk Üçoluk 2009

188 GRAPH MERGING

The merged graph is supposed to be:

sertac

sacit

burhan

asli

sahika

osman

makbule

cem

GRAPHmerged

Copyright ©Göktürk Üçoluk 2009

GRAPH MERGING 189

The data structures that correspond to the example:

"burhan"

"sahika"

"sacit"

"sertac"

"makbule"

GRAPH1

"makbule"

"burhan"

"sahika"

"asli"

"cem"

"osman"

GRAPH2

The merged graph is supposed to be:

Copyright ©Göktürk Üçoluk 2009

190 GRAPH MERGING

"burhan"
"makbule"

"sacit"

"sertac"

"asli"

"cem"

"osman"

"sahika"

GRAPHmerged

Specifications

The data structure that you are supposed to use is as follows:

• typedef
struct vertex

{ char tag;
char * label;
struct vertex * edge[1]; }

vertex, * vp;

#define TAG(vp) ((vp)->tag)
#define LABEL(vp) ((vp)->label)
#define EDGE(vp) ((vp)->edge)

The dynamic memory allocation technique that will be used to allocate space for a vertex

Copyright ©Göktürk Üçoluk 2009

GRAPH MERGING 191

in particular, has been explained in the lecture. You have to follow that technique.

• The function that you are going to define has a prototype of:

vp merge(vp graph1, vp graph2);

The function merge will take the pointers to supernodes of two graphs that conform with
the descriptions/specifications and then return a pointer to the supernode of the newly
created merged graph. This created data structure that corresponds to the merged graph
has to comply with the descriptions/specifications.

• The supernode of the merged graph is always the supernode of the first argument.

• The newly created data structure will not use any pointer value from/to any input data
structures. This includes the label strings as well. You have to duplicate them (Aid:
strdup). Even if you decide that a portion or all of the data structure of the input graph
remains the same you are not allowed to use any pointer to these (similar) parts of the
input.

• The labels are unique. In other words in the same graph no tow vertices will have the
same label.

• Labels are strings of alphanumericals.

• No pointer that correspond to an edge of a vertex points to that vertex.

• There is a tag field of type char which you are free to use for any purpose. The checker
program used for grading will not consider any data in this field.

• The labels of a vertex that are connected (are pointed) by an edge to a vertex are stored in
an increasing lexicographical order. (Observe the outgoing edges of burhan in the GRAPHmerged

for example. The first pointer points to the vertex of asli, the next is makbule, which is followed
by sacit. The last one is pointing to the vertex of sahika). The data structure that will be
submitted as argument to merge will conform with this rule. the merged, fresh created
data structure that will be returned by your implementation of merge has to conform with
this rule as well. (Aid: strcmp).

• No array declaration is allowed. All such needs have to be fulfilled by dynamic memory
allocations.

• You have to use the macros defined above. No subfield (dot) syntax, nor (->) is allowed
in any function.

• Your code that you will turn in may include helper functions. But refrain from defining
the main function. If you do so the test program will not compile (because it is our test
program that will provide the main function) and you will be graded zero.

• The lines that define the struct ure for the vertex and the define macros are provided
as a header file takehome2.h obtainable from:
www.ceng.metu.edu.tr/∼ceng140/the2.h

• The use of the TAGand LABEL macros are straightforward. Note that EDGEcan be used
indexed. Here is an example: EDGE(p)[2] . (This is just a possibility and not a necessity)

Copyright ©Göktürk Üçoluk 2009

