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Abstract

This study proposes an Island Parallel Evolutionary Extreme Learning Machine algorithm (IPE-ELM) for the well-known data
classification problem. The ELM is a fast and efficient machine learning technique with its single-hidden layer feed-forward
neural network (SLFN). High prediction accuracy and learning speed of the ELM make it an elegant tool for the fitness
calculation process of the evolutionary algorithms. The IPE-ELM algorithm combines the evolutionary genetic algorithms
(for feature selection), ELM machine learning technique (for prediction accuracy calculation), parallel computation (for
faster fitness evaluation), and parameter tuning (activation function selection and the number of hidden neurons) for the
solution of this important problem. Each ELM that runs at a different processor selects one of four different activation
functions (Sine, Cosine, Sigmoid and Hyperbolic Tangent) and uses a randomized number of hidden neurons to achieve
higher prediction accuracy. The proposed algorithm provides high quality results with its (near)-linear scalability behavior.
The IPE-ELM algorithm is compared with state-of-the-art data classification algorithms by using UCI benchmark datasets
and significant improvements are reported in terms of prediction accuracy with reasonable execution times. The scalable
IPE-ELM algorithm can be reported as the first island parallel evolutionary classification algorithm with its high prediction
accuracy results that outperforms state-of-the-art algorithms in literature.
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1 Introduction
Data classification is a crucial mining technique with its many applications in our daily life [1]. Scientists can identify,
acquire knowledge and derive statistical/predictive models by making use of data classification techniques. The
accuracy and the execution speed are important issues of the data classification process. One of the best means
of extracting interesting and valuable patterns is making use of recent machine learning techniques. Dealing with
large datasets (having many features and rows) requires advanced supervised machine learning techniques [2][3].
Supervised machine learning techniques build a model to predict the class labels of data by using a set of training
data. Recently, it is very common to have a large amount of data with several attributes/features and it is not an easy
process to properly clean and classify such a large amount of data correctly and obtain the distilled information. In
literature, there have been many supervised techniques proposed for the solution of the data classification problem.
However, the demand for fast algorithms that work with high prediction accuracy is still a valuable research area.

A high quality classifier is a crucial part of a data classification process. The classifier should have a good
prediction accuracy and a good generalization ability. The training speed of a classifier is another important point
that should be considered. Extreme Learning Machine (ELM) is a recent and fast supervised machine learning
technique with its high performance for the data classification problem [4]. The learning speed of feed-forward
neural networks is generally slow and it has been a major drawback in machine learning applications. Slow gradient-
based learning algorithms are used to train neural networks and the parameters of the networks are tuned by using
such learning techniques. These are the main reasons of the slow learning process. However, the ELM is a different
machine learning technique for single-hidden layer feed-forward neural networks (SLFNs) that randomly chooses
the number of hidden nodes and determines the output weights of SLFNs [5]. This property of the ELM makes
it a suitable technique for intensive fitness chromosome evaluation of evolutionary genetic algorithms that select
the best feature subset. The ELM has been applied to a lot of important problems and many studies are still under
progress for improving the performance of this valuable machine learning technique [6].

With recent developments in computer science, the need for real-time processing of large datasets presents big
challenges to traditional ways of data processing [7]. For this reason, Feature Subset Selection (FSS) has attracted
the attention of scientists to filter out unnecessary data and greatly reduce processing time [8]. Ensemble-based
wrapper methods (they use an exploration method for efficient FSS and use a machine learning method to measure
the accuracy level) applied with FSS are providing good results for the data classification problem [9]. The wrapper
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methods are computationally expensive tools since they need to compute many fitness values for the explored
subsets. However, they are still the best performing methods.

We use a parallel computation environment to select the features of a dataset by using a genetic algorithm and
apply ELM to the selected features to evaluate the prediction accuracy through fast evaluation of the instances.
Genetic and ELM machine learning have been used before for solving the data classification problem. However, it
is the first application of these methods with a parallel island genetic algorithm approach. We tune the parameters
of the ELM dynamically and experimentally show that our method outperforms state-of-the-art metaheuristics.
There have been earlier works that try to parallelize the ELM. Our method differs from the fact that we don’t
parallelize the matrix multiplication phase of ELM, which is a trivial method that enables faster execution using
parallel processing. This process requires intensive communication between processors and not scalable. Instead,
we propose an island parallel method and execute as many ELM as the number of processors in the environment
simultaneously. This approach provides an effective diversification mechanism for improving the population quality
of the genetic algorithm.

Considering all the issues mentioned above, we propose a novel evolutionary island parallel ELM-based classifier
for the data classification problem. To the best of our knowledge, the IPE-ELM algorithm is the first island parallel
machine learning algorithm in literature that has been applied to the data classification problem [10]. The IPE-
ELM generates diversified populations at each processor’s memory and improves the population’s fitness qualities
independently. Our approach provides a very effective diversification mechanism for increasing the population
quality of the genetic algorithm by initializing random number generator of each processor with a different seed.
At the termination phase of the processes at each processor, the best results of the slave nodes are collected by the
master node and the overall best solution is reported.

Parallel machine learning is a new developing research area and designing scalable parallel algorithms in this
field is challenging. In our opinion, the IPE-ELM algorithm is a unique algorithm with its efficient features when
compared with other algorithms in this domain. Four different activation functions are used during the classification
process, namely, Sine, Cosine, Sigmoid and Hyperbolic Tangent. It is not always possible to choose a single type of
activation function to be the best one for every possible dataset. Different activation functions can do better on
varied datasets. Each processor randomly selects one of these activation functions and continues its optimization
process. The number of hidden neurons is another criterion to be considered during the classification. The tuning of
this parameter greatly affects performance. This issue is also observed and the results obtained in our experiments
are reported. Therefore, each processor decides a different number of hidden neurons (in the range of [2-10] %
of the instance size) and runs the ELM. The size of the population has been chosen as 70 after comprehensive
tests. The best performing convergence, truncation, crossover and mutation ratios are applied in all processors of
the parallel distributed memory environment by using Message Passing Interface (MPI) libraries. The parallel and
diversified populations of the IPE-ELM algorithm provide a stagnation prevention mechanism. At each processor,
we select different seeds for the randomization of all parameters in the FSS and the ELM phases of the algorithm,
which prevents the genetic algorithm from exploring the same areas of the search space repeatedly. Comprehensive
experiments comparing our scalable algorithm with state-of-the-art classification algorithms show that the IPE-ELM
algorithm outperforms them in terms of prediction accuracy values with reasonable execution times.

Some of the state-of-the-art metaheuritics that have been applied to the data classification problem are Particle
Swarm Optimization (PSO) [3], Attribute Bagging (AB), (a technique for improving the accuracy and stability of
classifier ensembles induced using random subsets of features) [11], Multi-View Adaboost (MVA) [12], Random
Subspace Method for constructing decision forests (RSE) [13], Correlation based Feature Selection (CFS-SFS) [14],
C4.5 [15], Hybrid Genetic Algorithm and ELM-based feature selection algorithm (HGEFS) [9], Advanced Binary
Ant Colony Optimization (ABACO) [16], and ACO-based feature selection algorithm (ACOFS) [17]. The algorithms
mentioned here need to calculate the fitness of each next possible better solution, which is the most time-consuming
part of these algorithms. In our experiments, we compare our solutions with the results of these algorithms.

In section 2, related studies for the state-of-the-art ELM techniques and data classification algorithms are given.
The details of the ELM are presented in section 3. The proposed IPE-ELM algorithm is introduced in section 4. The
setup of the experimental environment, obtained results of the experiments, and comparison with state-of-the-art
methods are reported in section 5. Concluding remarks are provided in the last section.
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2 Related work
In this section, we give information about the ELM, FSS, state-of-the-art evolutionary data classification techniques
and parallel implementations of the ELM. Huang et al. introduced the ELM in 2004 [4]. Huang et al. propose the
ELM for the classification of the standard optimization method and enhances the ELM to a SLFNs support vector
network [18]. Huang et al. [19] show that least square SVM (LS-SVM) and proximal SVM (PSVM) can be simplified
and a unified learning framework of LS-SVM, PSVM, and other algorithms of regularization with ELM can be built.

Dash et al. [20] provide a comprehensive survey on FSS. Another comprehensive guideline on alternative FSS
approaches is presented by Xue et al. [9]. They present a survey of the state-of-the-art work on evolutionary
computation for FSS, which identifies the contributions of the present algorithms. Yang & Honavar [21] offer an
attractive approach to find near-optimal solutions. They present an approach to FSS using a genetic algorithm.
Xue et al. [9] propose a novel hybrid genetic algorithm and ELM based FSS algorithm (HGEFS). The experiments
show that HGEFS outperforms other algorithms in literature. Deniz et al. [22] propose a multi-objective genetic
algorithm combined with supervised machine learning techniques for the FSS in the binary classification problem.
The performance of their algorithm is compared with state-of-the-art algorithms, Greedy Search, Particle Swarm
Optimization, Tabu Search, and Scatter Search. The proposed algorithm is robust and it performs better than the
existing methods on most of the UCI datasets. Unler & Murat [3] investigate the FSS problem for the binary
classification using logistic regression model. They develop a discrete particle swarm optimization (PSO) algorithm
for the FSS problem. Their experiments report that this new discrete PSO algorithm is efficient in terms of both
computational performance and classification accuracy . The ELM may need higher number of hidden neurons
because of its random determination of the input weights and hidden biases. Zhu et al. [23] propose a new hybrid
differential evolutionary algorithm to select the input weights and MoorePenrose (MP) generalized inverse to decide
the output weights. Their results show that this new approach can have a good generalization performance with
compact networks. In a comprehensive review by Huang et al. [24], the current state of the theoretical research and
practical advances on ELM are reported. They give an overview of the ELM as theoretically from the perspective
of universal approximation capability, generalization ability, and the interpolation theory. They explain various
improvements of ELM that improve the stability, sparsity and accuracy under general or specific conditions.
Kiziloz et al. [25] consider the minimum number of features as a multi-objective optimization problem while not
compromising the accuracy of the results in FSS. They develop a set of novel multiobjective TLBO algorithms
combined with supervised machine learning techniques for the solution of FSS in Binary Classification Problems.

Alexandre et al. [26] solve the problem of selecting sound-description features for improving a vehicle classifier
work better. The purpose of the study is to measure the feasibility of a novel FSS method based on a special class
of a hybrid evolutionary algorithm based ELM. The method helps the ELM classifier to improve its performance
from a mean probability of correct classification of 74.83% (when no feature is eliminated) up to 93.74% (with
a subset of selected features). Garcia-Nieto et al. [27] perform the selection of genes to analyze the sensitivity
and the specificity, used as quality indicators of the classification tests. The classification is performed by SVMs.
The results show that their method is suitable to solve this problem. Bryll et al. [11] present a new technique to
improve the prediction accuracy of classifiers by using random subsets of features. The AB is a wrapper technique
that can be combined with learning algorithms. It finds a good feature subset size and selects subsets of features
randomly. Ho [13] proposes a new method to build a decision tree based classifier that keeps the highest accuracy
on training data and improves the prediction accuracy as it grows in complexity. Xu & Papageorgiou [28] propose
a mixed integer linear programming (MILP) model for the multi-class data classification problem by using a hyper-
box representation. Kartal et al. [29] develop a hybrid method that combines machine learning techniques with
multicriteria decision-making techniques to manage multi-attribute inventory analysis. Ou et al. [30] propose a
method based on ELM to predict the major raw material price in steel plants and focus on the integration of Grey
Relation Analysis (GRA) with a hybrid forecasting model to predict the cost of iron ore and coking coal.

Sun et al. [31] propose an OS-ELM based ensemble classification framework for distributed classification in a
hierarchical P2P network. They apply the incremental learning principle to produce an ensemble classifier. The
results of the experiments show the efficiency of the proposed algorithms. Li et al. [32] propose an algorithm
(TL-ELM) based on the ELM. The algorithm uses a small amount of target domain tag data and a large number
of source domain old data to build a high-quality classification model. The algorithm inherits the best sides of
ELM and makes up for the defects that traditional ELM cannot transfer knowledge. Xin et al. [33] propose a novel
distributed ELM based on MapReduce framework. The proposed algorithm covers the shortage of traditional ELM
whose learning ability is weak to huge dataset.

The parallel implementations of the ELM are as follows: Heeswijk et al. [34] present an approach for performing
regression on large datasets rapidly, using an ensemble of ELMs. They search for how the evaluation of ELMs can
be improved. The experiments show that the performance is good on the regression tasks, and the GPU-accelerated
ELM gains speedups over using a core. The approach can be applied with ELMs. He et al. [35] propose a parallel
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ELM on a MapReduce framework for regression. The results show that the parallel ELM for regression can work
well on very large datasets with commodity hardware. Lin et al. [36] present a practical ELM in cloud computing
to cut the training time. The cloud environment calculates the Moore-Penrose generalized inverse, the heaviest
computation load of the process. He et al. [37] propose a novel algorithm for face recognition with ELM and sparse
coding. The common feature hypothesis is used to extract the basis function from the local universal images and
the SLFN simulates the sparse coding process for face images with the ELM.

Parallel genetic algorithms are easy to develop and promise significant performance improvements for numerous
optimization problems either with single or multi-objective goals. Many NP-Hard problems have been solved
by using parallel genetic algorithms efficiently [38]. In a recent study by Tosun et al., [39] well-known quadratic
assignment problem instances are solved successfully. Dokeroglu & Cosar [40] solve the one-dimensional bin packing
problem by using island parallel genetic algorithms. Kucukyilmaz & Kiziloz [41] propose a novel parallel grouping
genetic algorithm for the one dimensional bin packing problem. To the best of our knowledge, there is no island
parallel evolutionary machine learning algorithm in literature like our IPE-ELM algorithm that is proposed for the
data classification problem.

3 Extreme Learning Machines
In this section, we give information about the ELM used by the IPE-ELM algorithm [4], [5]. The ELM uses an SLFN
with a learning speed faster than traditional feed-forward network learning algorithms (e.g. back-propagation (BP))
(see Figure 1 for SLFN). Due to its simplicity, remarkable efficiency, and impressive performance on generalization,
the ELM has been applied in a variety of domains, such as computer vision, bioinformatics, data classification,
system identification, and control and robotics [24].

Figure 1: Single-hidden layer feed-forward network.

The output of SLFN having L number of hidden nodes can be represented with the Equation 1;

fL(x) =

L∑
i=1

βi.G(ai, bi, x) xεRn, ai, biεR (1)

where ai and bi are the learning parameters of hidden nodes βi the weight connecting the ith hidden node to
the output node. G(ai, bi, x) is the output of the hidden node with respect to the input x. In general, the additive
hidden node with activation function is g(x) : R→ R. At time, G(ai, bi, x) is given by;

G(ai, bi, xj) = g(ai.xj + bi) biεR, j = 1, ..., N (2)

Equation 3 can be written as;

Hβ = T (3)

where,

H(a1, ..., aL, b1, ..., bL, x1, ..., xN ) =

 g(a1.x1 + b1) · · · g(aL.x1 + bL)
... · · ·

...
g(a1.xN + b1) · · · g(aL.xN + bL)


NxL

(4)

β =

 βT
1
...
βT
L


Lxm

and T =

 tT1
...

tTN


Nxm

(5)

H is called the hidden layer output matrix of the SLFN; the i−th column of H is the jth hidden node output with
respect to the input x1, x2, ..., xN . h(x) = G(a1, b1, x), ..., g(aL, bL, x) is called the hidden layer feature mapping.
The ith row of H is the hidden layer feature mapping with respect to the ith input xi : h(xi). It has been proved
that from the interpolation capability point of view, if the activation function g is infinitely differentiable in any
interval the hidden layer parameters can be randomly generated.

Activation functions: The ELM finds a solution on a unified learning framework for SLFNs. Activation function,
also called as Transfer Function, defines the output of a node due to a given input or set of inputs. In other words,
activation functions are used to restrict and limit the output value to a certain finite value range. In terms of this
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approximation, activation function has an important role. Here, we examine the efficiencies of activation functions
and perform experiments. In our algorithm, we use four different activation functions. Each processor in the
parallel computation environment uses/selects one of these activation functions randomly during the optimization
process. These activation functions used by the IPE-ELM algorithm are:

Sigmoid function: is a mathematical function having a characteristic ”S”-shaped curve or sigmoid curve. In this
context, sigmoidal function refers to the special case of the logistic function, defined by the formula:

sig(x) =
1

1 + e−x
(6)

where n is the weighted sum of the inputs. Its range is between zero and one. It is easy to understand and
apply but it has major problems. First, it has vanishing gradient problem, which means in some cases, the gradient
will be vanishingly small, effectively preventing the weight from changing its value. Secondly, its output is not
zero centered. It could make the gradient updates go too far in different directions.

Hyperbolic Tangent function: Its mathematical formula is:

tanh(x) =
1− e−2x

1 + e−2x
(7)

Its output is zero centered because its range is between -1 to 1, i.e. −1 < output < 1 . Hence the optimization is
easier in this method in practice. It is sometimes preferred over Sigmoid function. But it also suffers from vanishing
gradient problem.

Sine function: Though most activation functions used in SLFN or deep neural networks are non-periodic, we can
also use periodic functions such as sine and cosine.

sin(x) = −1 ≤ output ≤ 1 (8)

In case of a neural network system with sine activation, the entire solution will be repeated periodically and the
system will be trained for similar output classes. A neural network with one hidden layer can approximate any
function, given the activation function is increasing and is finite (with a min and a max) where The sine function
is not an increasing function and an input to sine function that is very low and very high might produce the same
output.

Cosine function: is used for a comparison with sine function though it is not a commonly used activation function.
Its results are observed due to its periodic nature w.r.t. sine function.

cos(x) = −1 ≤ output ≤ 1 (9)

4 Island Parallel Evolutionary Extreme Learning Machine Algorithm (IPE-ELM)
In this section, we introduce our proposed island parallel evolutionary algorithm, IPE-ELM. The main goal of the
algorithm is to discover the best subset of features that will produce the highest prediction accuracy for the data
classification problem. The IPE-ELM algorithm has two main components (phases), evolutionary computation (for
selecting feature subsets) and the ELM (for finding the prediction accuracy of the selected features).

Island parallel genetic algorithms are novel implementations of classical evolutionary genetic algorithms on
parallel/distributed computation environments. In classical approach there exits a single population on the memory
of the processor and the quality of the population is improved by using crossover and mutation operators through
generations [38]. Getting stuck into local optima is a common problem in this approach. However, island parallel
version of the genetic algorithms provide many diverse populations on the memory of processors and optimize the
solution of the problem. A communication can be provided between the populations in the environment or not. It
depends on the implementation approach of the developers. In previous studies, it is observed that island parallel
algorithms provide better results than their single-core versions [41]. Our proposed algorithm IPE-ELM is a typical
island parallel genetic algorithm that is applied to the solution of this problem for the first time.

The chromosome structure of the IPE-ELM algorithm consists of genes that represent the attributes/features of
a given dataset. The values of the genes are binary (either one or zero). Value one means that the gene is selected,
whereas zero means that the corresponding feature is eliminated. In Figure 2, chromosomes in the crossover
process are given in binary. The crossover operation happens between two selected chromosomes and produces
two new children chromosomes. The crossover operator of the IPE-ELM algorithm prevents the searching process



FEBRUARY 2019 6

from being stagnated at local optima by continuously diversifying the individuals in the population. The proposed
mutation operator works on a single chromosome that is randomly selected from the population and one of its
genes is randomly selected to be mutated. If the value of selected gene is one, it is changed to zero or vice versa.
Figure 3 presents how the mutation operator works on a chromosome.

Figure 2: Crossover operator that works on two chromosomes. A new child is generated from the left part of
first chromosome and right part of the second chromosome.

Figure 3: Mutation operator changes the value of the fourth gene to generate a new one.

Each processor (slave node) in the parallel computation environment has its own diverse population that is
initialized/generated randomly with respect to the rank of the processor. Thus, the population produced in each
processor becomes different from the other populations, resulting in very efficient use of the parallel processing
power. The random number generator of the IPE-ELM algorithm depends on the rank identifier of the processor
defined by MPI. This property provides distinct random number sequences and used to prevent populations to get
stuck into local optima.

The number of hidden neurons is observed to be a crucial parameter for the performance of the ELM. In our
experiments, we randomly select the number of hidden neurons in the range 2-10% of the number of instances of
the dataset. This value results in a well-tuning of the number of hidden neurons that optimizes the quality of the
solutions with good prediction accuracy while keeping reasonable execution times. Using higher number of hidden
neurons takes a longer time and there is no guarantee that it will improve the quality of the solution.

Four different activation functions are used at the ELM phase of the IPE-ELM algorithm. The activation functions
are Sigmoid, Hyperbolic Tangent, Sine and Cosine. During the fitness value evaluation of each chromosome, one of the
activation functions mentioned above is randomly selected along with a random of number of hidden neurons. The
main reason of doing this is that during our experiments we obtain varying fitness values for the same selected
subset of features when we apply varying activation functions. There is no single activation function type that
fits for all datasets. Sigmoid activation function can perform good for dataset 1, whereas Cosine activation function
can work better with dataset 2. The IPE-ELM algorithm considers these possibilities and uses different activation
functions during the learning process.

The IPE-ELM algorithm executes as many instances of ELM as the number of processors in the computation
environment during the fitness calculation of the chromosomes. Although it is reported to be a fast method, the
ELM execution part is the most time-consuming phase of the algorithm. Stagnation at some local optima is an
important issue of evolutionary algorithms that must be considered carefully. It can generate serious problems
and prevent the optimization process from attaining the optimal solution. The IPE-ELM algorithm is aware of this
drawback of the evolutionary computation techniques. Therefore, diversified initial populations are generated at
each processor. The possibility of getting better solutions and evaluating many different chromosomes is ensured
with this way. This technique is similar to the restarting of the populations from scratch when working with a
single-CPU. In a parallel computation environment, we build this mechanism by using several processors. This is
provided by selecting a different seeding mechanism for the randomization of all parameters in the FSS and the
ELM phases of the algorithm. This technique prevents the genetic algorithm from exploring already searched areas
repeatedly.

Table 1 presents the parameters that are used in the evolutionary computation phase of the IPE-ELM algorithm.
At all the processors, we use the same parameters that are near-optimal. The flowchart of the IPE-ELM algorithm
is presented in Figure 4. The master and slave topology of the IPE-ELM algorithm is presented in Figure 5. The
master node starts and controls the execution of the slave nodes. Each slave generates solutions with different
starting pseudorandom numbers and executes the optimization individually. At the end of the optimization periods
of slaves, the slaves send their results to the master node and the master nodes decides the best solution after
collecting all the solutions. There is no deadlock possibility of the processes between the slaves in this topology.
Therefore, it is easy to implements and efficient while optimizing the solution of data classification problems.
Algorithm 1 gives the details of the IPE-ELM algorithm.

Table 1: Parameter settings for the IPE-ELM algorithm.

Figure 4: Flowchart of the IPE-ELM algorithm.

Figure 5: Master and slave communication topology of the IPE-ELM algorithm.

Selection of parent chromosomes: Truncation is applied after the crossover and mutation operations. The solution
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population is divided into two equal parts with respect to the fitness values of the chromosomes and the better
half is used for evolving. Later, the better half is divided into two equal segments and starting from the topmost
part to the chromosome with the best fitness value, each chromosome is applied crossover and mutation operators
by other corresponding chromosomes in the second half. With this operation, 50% more individuals are generated
with respect to the original population size. The population size becomes 50% more than its original size. All the
chromosomes in this new population are sorted and the worst half of the population is removed.

Termination condition: is decided to be an echelon value that any good solution cannot be found any more. It
may change with respect to the execution order of the genetic algorithm. Convergence ratio, 95%, is used during
our experiments as the termination condition.

Fitness value calculation: is simply calculated by ELM as an accuracy value in terms of percentage. The objective
of a genetic algorithm is to evolve through better solutions and improve the quality of prediction accuracy of the
chromosomes in the population.

Algorithm 1: Pseudocode of the IPE-ELM algorithm

1 if (Master processor) then
2 Receive results from slaves();
3 Find the best result();
4 Report the overall best result();
5 else
6 // Code of slave processors;
7 p: population;
8 generate initial population(p);
9 while (termination criterion is not met) do

10 par1, par2 ← Select parents(p);
11 offspring ←Crossover(par1, par2);
12 offspring ← Mutation(offspring);
13 // Extreme Learning Machine Phase
14 Decide # hidden neurons (w.r.t. the rank of the processor);
15 Decide the activation function (w.r.t. the rank of the processor);
16 Calculate hidden-layer output matrix H;
17 Calculate (β and T );
18 Evaluate H, i.e. the MoorePenrose generalized inverse of matrix H;
19 Evaluate the fitness value of the chromosome (selected set of features);
20 Insert the offspring chromosome into the population ;

21 Send the best result of this processor to the master node;

5 Performance Evaluation of the IPE-ELM Algorithm
In this section, we present the experimental setup, the results of a series of experiments carried out to evaluate
the prediction accuracy of the IPE-ELM algorithm, the parameter sensitivity of the algorithm and comparison with
state-of-the-art data classification algorithms in literature. We carry out experiments on 8 core 64-bit CPU. It is
possible to create 8 threads at each core (providing 64 possible cores simultaneously). The server uses 256 GB RAM
and 1.5 TB. hard-disk storage.

The IPE-ELM algorithm is developed by using Java on an Open MPI 1 environment. The Open MPI is an open
source MPI version that is written and maintained by a collaboration of research, academic, and industry groups.
Open MPI combines the technologies, expertise, and resources from all across the HPC community to build the
best MPI library. Open MPI provides facilities for system and software administrators, application developers and
computer science researchers. Open MPI is developed on Linux and OS X, so it is fairly POSIX-neutral, it runs
without modifications on most POSIX-like systems. Open MPI is layered on top of the Open Run-Time Environment
(ORTE), which started as a small portion of the Open MPI code base. ORTE is a modular system that is constructed
to abstract away the back-end run-time environment system, providing a neutral API to the upper-level Open MPI
layer.

1. https://www.open-mpi.org/
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Benchmark datasets used in the experiments: are obtained from the University of California (UCI) Machine
Learning Repository. The number of features, the number of instances and the actual number of classes of the
datasets are given in Table 2. There are 11 different datasets. In order to analyze the performance of the IPE-ELM
algorithm, datasets with a small and large number of features/instances are used. Iris dataset has 4 features,
whereas musk has 160 features. Sonar has the smallest number of instances (208) and spam has the largest number
of instances (4,601). These datasets are the most used sets by state-of-the-art algorithms. Therefore, they provide a
fair environment during the comparisons.

Table 2: Descriptive statistics of the datasets.

The effect of activation function and the number of hidden neurons: Selecting the most appropriate activation
function increases the performance of the ELM significantly. Therefore, we carry out some experiments on this part
of our study to detect the best performing activation function. Sigmoid, Hyperbolic Tangent, Sine, and Cosine are the
activation functions that we are used for the ELM phase. At each processor, the ELM selects an activation function
randomly and evaluates the accuracy achieved by using the selected features. We carry out our experiments on the
musk, sonar, ionosphere, and waveform datasets. We execute the IPE-ELM algorithm with a single processor (10 times
and report the average values) and with increasing number of hidden neurons. The number of hidden neurons is
started at 10% of the number of rows (instances) of the datasets (musk, sonar, ionosphere) up to 200% and from 1% to
20% for waveform dataset (because as the number of neurons is increased the execution time also increases, which
can be a big workload during the data classification process). All the features of the datasets are selected during
these experiments. No feature subset selection technique is applied. Figures 6, 7, 8 and 9 present the results of our
experiments.

Sigmoid is found to be the best performing activation function with datasets, sonar, ionosphere, and waveform.
However, Cosine function outperforms others as the best activation function for the sonar dataset. In waveform
dataset experiments, Sigmoid function performs better than the other functions. From the observations we make in
the activation function experiments, sometimes the performance of the activation function can change depending
on the number of hidden neurons. For example, during ionosphere dataset experiments (see Figure 8), Sine function
performed better than all the other activation functions. The number of hidden neurons is nearly 100 with this
experiments. Therefore, to make use of the performance of different activation functions under different conditions,
we use a random mechanism while selecting an activation function for the IPE-ELM algorithm.

In Figure 10, the execution time of the activation functions are reported for the waveform dataset with a different
number of hidden neuron numbers starting from 1% to 20% of the number of the instances in the dataset. No big
difference is observed between the execution times of the activation functions. Therefore, there is no advantage of
any activation function over others in terms of evaluation speed.

Figure 6: Experiments with increasing number of hidden neurons on musk dataset.

Figure 7: Experiments with increasing number of hidden neurons on sonar dataset.

Figure 8: Experiments with increasing number of hidden neurons on ionosphere dataset.

Figure 9: Experiments with increasing number of hidden neurons on waveform dataset.

Figure 10: Execution time of the activation functions in seconds.

Setting the population size: Selecting the parameters of a genetic algorithm to converge to a global optimum
quickly is a serious tuning process that can significantly impact the performance of the optimization process.
Therefore, we perform some experiments with varying population sizes. Our experiments are executed on sonar
and ionosphere datasets. The population size is selected as 10 at the first step of the experiments. Later, this value is
increased by steps of 10 up to 100 individuals. Figures 11 and 13 give the details of our prediction accuracy results
with respect to the increasing number of population size for the sonar and ionosphere datasets respectively. All the
population sizes are observed to increase their accuracy levels as the new generations are produced by genetic
algorithm. However, small populations are observed to get stuck into local optima while populations larger than
80 individuals tend to spend unnecessarily long time while optimizing the prediction accuracy level. Populations
having 70 to 80 individuals are experienced to be among the best performing population sizes for the datasets.
Figures 12 and 14 give the execution times of the sonar and ionosphere datasets respectively for population sizes
10 to 100 until they achieve their termination condition. Populations with a larger number of individuals (more
than 70) tend to execute longer times than smaller populations. As a result of our population experiments, we
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decide the best performing population to be 70, because its execution time is reasonable and reports near-optimal
solutions during the data classification process.

Figure 11: The prediction accuracy results of sonar dataset for populations 10 to 100 until they reach to their
termination condition.

Figure 12: Execution times of the sonar dataset for populations 10 to 100 until they reach to their termination
condition.

Figure 13: The prediction accuracy results of ionosphere dataset for populations 10 to 100 until they reach to
their termination condition.

Figure 14: Execution times of the ionosphere dataset for populations 10 to 100 until they reach to their termination
condition.

Testing the prediction accuracy with different number of features: We observe the prediction accuracy of the
ELM with different number of selected features. The number of hidden neurons is selected as 20 and activation
function is selected as Sigmoid during the experiments. The first feature is selected as a starting point, then new
features are added one at a time to generate another. The number of features is increased with this way during
the experiments. Datasets spambase and musk are analyzed (see Figures 15 and 16). As it can be seen from the
experiments, the number of selected features does not present a stable and predictable performance. Therefore, a
good exploration and exploitation algorithm is required for the selection of the best possible set of features. We
do these experiments to explain the necessity of selecting the best possible subset for the classification process.
Selecting all the features of a dataset does not give the best prediction accuracy results. Therefore, the selection
of the best subset of features is an interesting area of research for the data classification, which can improve
the accuracy results significantly while also obtaining a faster executing light-weight classifier since it needs to
calculate and process less features.

Figure 15: Prediction accuracy results with increasing number of features for the spambase dataset (features are
selected from 1 to 57).

Figure 16: Prediction accuracy results with increasing number of features for the sonar dataset (features are
selected from 1 to 60).

The prediction accuracy performance deviation of the ELM: is analyzed in this part of our experiments. Since
the ELM is using a randomized process, it can have some deviations in its prediction accuracy performance.
Figures 17 and 18 give the prediction accuracy results of the ELM for the datasets sonar and ionosphere respectively.
The deviation of the ELM is 7.1% and 2.6% for the sonar and ionosphere datasets, respectively. Activation function is
Sigmoid and the number of hidden neurons is 22 for sonar and 37 for ionosphere respectively. 50 runs are executed
during these experiments (x-axis of the graph shows the iteration numbers). Increasing the number of hidden
neurons is not observed to have any positive effect on reducing the deviation of the performance of the ELM.
Instead, the deviation is observed to change depending on the type (structure) of the dataset that is being classified.

Figure 17: The deviation of prediction accuracy performance of the ELM for the sonar dataset.

Figure 18: The deviation of prediction accuracy performance of the ELM for the ionosphere dataset.

Increasing the number of processors: We experimentally measure the performance of the IPE-ELM algorithm with
increasing number of processors. Since the FSS is an intractable problem due to its exponential number of subsets
that needs to be evaluated, increasing the number of processors and working on diversified populations is reported
to be an efficient way for the solution of the problem [42]. The IPE-ELM algorithm is scalable, which means that as
more processors are added to the computation then more fitness values can be evaluated concurrently, enabling the
investigation of more and larger subsets of features to be investigated in a short time. Island parallel behavior of the
IPE-ELM algorithm provides a very efficient way to calculate the fitness of several chromosomes concurrently. MPI
is a powerful library that can support thousands of processors to work in coordination simultaneously. Although
we perform experiments with only up to 64 processors, the IPE-ELM algorithm has a potential to getter better
results by increasing number of processors. In Figure 19, the performance of the IPE-ELM algorithm with increasing
number of processors on the sonar dataset is presented. Experiments are performed with increasing number of
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processors starting from 5 up to 64. Each test is executed 10 times and the average of the results is presented.
83.3% of the instances are classified correctly with five processors and the accuracy is increased up to 87.6% in the
average when the number of processors is 64. This shows that the IPE-ELM algorithm improves its solution quality
with increasing number of processors. In Table 3, detailed information for the #processors, time (sec.), accuracy (%),
#hidden neurons, activation function type, and #generations are provided. The activation functions Sigmoid, Cosine,
and Sine are observed to perform well on the classification of dataset sonar. As we analyse the execution time of
the IPE-ELM algorithm, it is observed that the execution time of the last processor that terminates (converges) its
generations decides the overall execution time of the algorithm. Some of the processors terminate earlier because
of the fast convergence, the others can spend more time on improving their quality of the population. Also, there
can be differences in the execution time of the processors due to the varying #hidden neurons. This skewness
(slowness) of the algorithm can be prevented by using the same number of generations for each processor. We
prefer each processor to operate in its own convergence ratios. We are able to achieve better results with this method.

Figure 19: The performance of the IPE-ELM algorithm with increasing number of processors on the sonar dataset.

Table 3: Detailed information about the increasing number of processor experiments on the sonar dataset.

Prediction accuracy performance of the IPE-ELM algorithm: We observe whether we will have any improvement
on the prediction accuracy of the results with the selected features instead of working with all features of a dataset.
Table 4 gives the details of the experiments in terms of prediction accuracy improvements when a subset of features is
selected intelligently. Improvements ranging from 3.1 to 231.5% are observed for iris and vehicle datasets, respectively,
during the experiments. These results show that selecting the best subset of features can significantly improve the
prediction accuracy level of the classification process. Datasets with a small number of attributes are more likely to
reach higher prediction accuracy levels with the selected features. The performance increase in iris dataset is due
to better tuning of the parameters and not from selecting a subset of features.

All the results are the average values of 10 runs with tenfold cross-validation. We use this method to minimize
the impact of random factors. In the experiments, the dataset is first partitioned into 10 equal size sets and 9 out of
these 10 subsets are used for training while the remaining one is used as a test dataset. Then, the average of these
10 runs is used as accuracy value. This is the most common way of evaluating the prediction accuracy performance
of the classifiers in literature. Table 5 gives the features of the datasets that are selected by the IPE-ELM algorithm
in the experiments. The last column shows the selected features of the datasets.

Table 6 presents the execution time, prediction accuracy, #hidden neurons, activation function type and
#generations that give the best solutions after executing with 64 processors. Sine and Sigmoid functions are
observed to be the best performing activation functions. With largest feature numbers, Sigmoid outperforms the
other activation functions. Spam and Waveform datasets are observed to spend the longest execution times during
the classification process.

Table 4: Comparison of prediction accuracy values when all features and the best performing feature set are
selected.

Table 5: The selected features by the IPE-ELM algorithm to provide the best prediction accuracy results.

Table 6: Detailed information about the performance of the IPE-ELM algorithm with all datasets.

The execution time of the IPE-ELM algorithm: is compared with the algorithms that use the same kind of
population-based optimization approach. It is observed that the IPE-ELM is a fast polynomial-time algorithm
when compared with other state-of-the-art algorithms [5], [18], [19]. The PSO-SVM [27], GA-ELM [26] and HGEFS
[9] are the algorithms that we use for comparison on Arrythmia dataset (having 279 features and 452 instances).
The IPE-ELM algorithm can be decided as one of the fastest algorithms in its class due to the high-speed learning
capability achieved by the ELM technique. The execution time of the IPE-ELM algorithm depends on the processor
that runs the largest number of generations, which means that some of the processors can get stuck into the
local optima and converge earlier than the others so that the master node has to wait for the last processor to
finish its final generation. The number of hidden neurons also affects the running time. If the ELM uses larger
#hidden neurons, the IPE-ELM executes longer (see Figure 10). The execution time of the algorithms PSO-SVM
[27], GA-ELM [26] and HGEFS [9], and the IPE-ELM are 50,493, 4,373, 4,936 and 15,142 seconds, respectively. The
IPE-ELM algorithm has a reasonable execution time with respect to the other state-of-the-art algorithms. In Figure
20, the execution time of the algorithms are presented.
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Figure 20: Execution time of state-of-the-art algorithms (in seconds).

Scalability and speed-up The IPE-ELM algorithm generates initial populations at the memory of each processor
and explores the fitness value of the local populations independently. There is no communication between the
processors during their optimization processes. This way of processing the populations provides scalability for
the IPE-ELM algorithm. The computation skewness (slowness) is prevented with this way, which means that
processors do not have any dependency on the jobs that must be completed by the other processors. The independent
population and exploration strategy of the IPE-ELM algorithm provides a scalable performance if and when the new
processors can be added to the computation environment. In Figure 19, the performance of the IPE-ELM algorithm
is presented for increasing number of processors. The scalability of the IPE-ELM algorithm can be observed easily
when the number of processors is increased from 5 to 64 for sonar dataset. The total execution time is not affected
significantly. The most important issue that decides the execution time of the algorithm is the convergence time of
the optimization. If the algorithm gets stuck in local optima it terminates earlier.

The IPE-ELM algorithm provides almost a linear speed-up during the executions. The only computation
skewness is due to the selection of a different number of hidden neurons. As the percentage of the number of
hidden neurons are increased, the execution time is observed to increase.

Comparison with state-of-the-art algorithms: We compare the IPE-ELM algorithm with state-of-the-art
algorithms in literature (Namely, PSO [3], Attribute Bagging (AB) [11], Multi-View Adaboost (MVA) [12], Random
Subspacing Ensemble (RSE) [13], (CFS-SFS) [14], C4.5 [15], HGEFS [9], ABACO and ACOFS [16]). Table 7 gives
the details of the comparison in terms of prediction accuracy (these are the only results we can be found from
the earlier studies which are comparable with our proposed algorithm and our selected set of datasets). The
underlined results are the best ones obtained by the state-of-the-art algorithms. The IPE-ELM algorithm produces
the best results for seven datasets. These results are the best solutions that have been reported by any algorithm
so far. spam, musk, and wave datasets are best solved by ACOFS, HGEFS and PSO algorithms respectively. The
musk dataset has the largest number of features. The overall prediction accuracy performance of the IPE-ELM
algorithm is observed to be 89.65% for the datasets in the experiments. These values are the best-reported results
in literature. It is still possible to add new processors and improve the solution quality of the IPE-ELM algorithm.

Table 7: Comparison of prediction accuracy results with state-of-the-art algorithms.

6 Conclusions and future work
In this study, we present a novel Island Parallel Evolutionary Extreme Learning Machine algorithm (IPE-ELM) for the
data classification problem. The ELM is an efficient machine learning technique with fast speed learning capability
and high prediction accuracy. In addition, it is well known that effective feature selection methods can improve the
quality of the ELM. We combine ELM with a parallel evolutionary algorithm and propose a robust data classification
algorithm. Activation functions together with the number of hidden neurons are tuned for the first time in this
study by using a scalable algorithm. Our results show that the IPE-ELM is among the best performing algorithms
with its high prediction accuracy rate (89.65% in the average for the experimented datasets). The search space of the
data classification problem has many parameters that must be well tuned for a better optimization. For this reason,
a more powerful and intelligent tool such as parallel computation is required to calculate multiple alternatives
intelligently and improve the solution quality. Because the IPE-ELM algorithm is scalable, it is possible to increase
the performance of the IPE-ELM algorithm by adding more processors to the MPI computation environment. The
IPE-ELM algorithm is scalable and can increase the prediction accuracy of the results. FSS problem is an open
research area due to its intractable nature.

As future work, the data classification problem can be solved by using GPU supported hybrid metaheuristic
algorithms. Multi-objective data classification with parallel computation can be another direction of research.
Artificial Bee Colony (ABC) is a recent and efficient metaheuristic that can be applied to this important problem.
Hyper heuristics is a novel area that uses the best practices of the heuristics to obtain near-optimal results
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7 Figures and Tables

Fig. 1: Single-hidden layer feed-forward network.

Fig. 2: The crossover operator that works on two chromosomes. A new child is generated from the left part of first chromosome
and right part of the second chromosome.

Fig. 3: The mutation operator changes the value of the fourth gene to generate a new chromosome
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Fig. 4: The flowchart of the IPE-ELM algorithm.
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Fig. 5: Master and slave communication topology of the IPE-ELM algorithm.

Fig. 6: Experiments with increasing number of hidden neurons on musk dataset

Fig. 7: Experiments with increasing number of hidden neurons on sonar dataset.
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Fig. 8: Experiments with increasing number of hidden neurons on ionosphere dataset.

Fig. 9: Experiments with increasing number of hidden neurons on waveform dataset.

Fig. 10: Execution time of the activation functions in seconds.
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Fig. 11: The prediction accuracy results of sonar dataset for populations 10 to 100 until they achieve their termination condition.

Fig. 12: Execution times of the sonar dataset for populations 10 to 100 until they achieve their termination condition.

Fig. 13: The prediction accuracy results of ionosphere dataset for populations 10 to 100 until they achieve their termination
condition.

Fig. 14: Execution times of the ionosphere dataset for populations 10 to 100 until they achieve their termination condition.
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Fig. 15: Prediction accuracy results with increasing number of features for the spambase dataset (features are selected from 1 to
57).

Fig. 16: Prediction accuracy results with increasing number of features for the sonar dataset (features are selected from 1 to 60).

Fig. 17: The deviation of prediction accuracy performance of the ELM for the sonar dataset.
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Fig. 18: The deviation of prediction accuracy performance of the ELM for the ionosphere dataset.

Fig. 19: The performance of the IPE-ELM algorithm with increasing number of processors on the sonar dataset.
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Fig. 20: Execution time of state-of-the-art algorithms (in seconds).

TABLE 1: The parameter settings for the IPE-ELM algorithm

parameter setting
Population size 70
Convergence ratio 95%
Truncate ratio 50%
Crossover ratio 30%
Mutation ratio 1%

TABLE 2: The descriptive statistics of the datasets

ID Dataset #features #instances #classes
ION IONOSPHERE 34 351 2
SON SONAR 60 208 2
VEH VEHICLE 18 846 4
MUS MUSK 166 476 2
IRI IRIS 4 150 3
PID Pima-Indian Diabetes 8 768 2
WDB WDBC 32 569 2
WIS Wisconsin B.C.(Or.) 10 699 2
CHS CHESS 36 3,196 2
SPM SPAM 57 4,601 2
WAV WAVEFORM 21 569 3

TABLE 3: Detailed information about the increasing number of processor experiments on the sonar dataset.

# processors time (sec.) accuracy (%) #hidden neurons activation func. #generations
5 203 83.32 15 Sigmoid 192

10 116 84.32 10 Sigmoid 150
15 225 84.32 23 Cosine 147
20 58 84.84 7 Sigmoid 93
25 157 84.68 9 Cosine 232
30 263 84.63 17 Cosine 202
35 108 85.24 12 Sigmoid 102
40 200 85.36 11 Sigmoid 195
45 222 86.08 22 Sine 120
50 405 86.16 19 Sine 252
55 100 87.03 9 Sigmoid 98
60 247 87.14 20 Cosine 142
64 263 87.63 17 Cosine 202
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TABLE 4: Comparison of prediction accuracy values when all features and the best performing feature set are selected.

ID all features selected selected features improvement(%)
ION 79.6 93.44 17.3
SON 67.3 87.63 30.2
VEH 25.5 84.55 231.5
MUS 55.9 81.91 46.5
IRI 96.3 99.33 3.1
PID 52.3 78.13 41.3
WDB 55.4 97.53 76.0
WIS 93.4 97.81 4.7
CHS 58.6 94.56 61.3
SPM 59.4 90.76 52.7
WAV 54.7 80.54 47.2

TABLE 5: The selected features by the IPE-ELM algorithm to provide the best prediction accuracy values.

ID accuracy selected features
ION 93.44 0-1-0-0-1-0-0-0-0-0-0-0-0-1-0-0-0-0-0-0-0-0-0-0-0-0-1-0-1-0-0-0-0-0

SONAR 84.86 0-0-1-1-1-1-1-0-0-0-1-1-0-0-0-0-1-0-0-0-0-1-0-0-0-0-1-1-0-1-1-0-0-0-0-0-1-0-0-1-0-0-0-0-1-1-1-0-
1-1-1-1-0-1-0-0-0-0-1-0

VEH 84.55 1-0-1-1-1-1-1-1-0-1-0-0-0-1-0-0-1-1

MUS 81.91

1-0-1-1-0-1-1-1-1-1-0-1-0-1-0-0-1-1-1-1-0-0-1-0-0-1-1-0-0-0-0-0-0-0-0-1-0-1-0-0-0-0-0-1-1-1-0-0-0-
1-1-1-1-0-1-1-0-1-1-0-0-0-1-1-1-0-0-0-0-1-0-0-1-1-0-0-1-0-1-1-0-1-0-0-0-1-0-1-0-0-0-0-1-0-0-1-1-1-
0-0-1-1-1-0-0-0-0-1-0-1-0-1-1-1-0-1-0-0-0-1-1-0-1-1-1-0-0-0-1-0-1-0-0-1-0-1-0-0-0-1-1-0-0-1-0-1-0-
0-1-1-0-0-1-0-1-0-0-0-0-0-1-0-1-1-0-0-1

IRI 93.33 1-1-1-1
PID 78.13 0-1-0-0-0-1-1-1
WDB 97.53 1-1-0-0-0-1-1-1-0-0-0-0-0-0-1-0-1-0-0-1-1-1-0-0-1-0-1-1-1-1
WIS 97.80 1-0-1-0-0-1-0-1-0-1
CHS 94.55 1-0-0-0-0-1-0-0-1-1-0-0-0-1-1-0-1-0-1-0-1-1-0-0-0-0-0-0-0-0-0-1-1-0-1-0

SPM 90.76

0-0-0-0-1-0-1-0-1-0-0-0-0-0-1-1-0-0-0-1-0-0-1-1-1-0-1-0-0-0-0-1-0-0-0-0-0-1-0-0-0-0-1-1-0-1-1-1-0-
0-0-1-1-0-0-0-0-0-1-1-1-0-0-0-1-1-1-1-0-1-1-0-1-1-0-0-0-1-1-1-0-0-0-0-1-0-0-1-1-0-0-1-0-1-1-0-1-0-
0-0-1-0-1-0-0-0-0-1-0-0-1-1-1-0-0-1-1-1-0-0-0-0-1-0-1-0-1-1-1-0-1-0-0-0-1-1-0-1-1-1-0-0-0-1-0-1-0-
0-1-0-1-0-0-0-1-1-0-0-1-0-1-0-0-1-1-0-0-1-0-1-0-0-0-0-0-1-0-1-1-0-0-1

WAV 80.53 0-0-0-0-1-1-0-0-0-1-1-0-1-0-1-0-1-0-0-0-0

TABLE 6: Detailed information about the performance of the IPE-ELM algorithm with all datasets.

ID time (sec.) accuracy (%) #hidden neurons activation func. #generations
ION 750.9 93.44 24 Sine 233
SON 324 87.63 23 Sine 156
VEH 2047,442 84.55 70 Sigmoid 109
MUS 2,182,795 81.91 36 Sigmoid 159
IRI 5707 99.33 151 Sine 48
PID 974,236 78.13 84 Sigmoid 71
WDB 249,885 97.53 58 Sigmoid 49
WIS 894,762 97.81 40 Sigmoid 97
CHS 7,106,789 94.56 20 Sigmoid 91
SPM 18,564,449 90.76 20 Sigmoid 96
WAV 156,046,222 80.54 210 Sigmoid 66

TABLE 7: The comparison of prediction accuracy results with state-of-the-art algorithms.

ID PSO [3] AB [11] MVA [12] RSE [13] CFS-SFS [14] C4.5 [15] HGEFS [9] ABACO [16] ACOFS [17] IPE-ELM
ION 89.4 89.54 90.14 89.01 89.06 91.16 91.33 - - 93.44
SON - 80.83 80.17 79.50 78.75 71.15 83.00 - - 87.63
VEH - 80.95 81.20 77.32 69.17 73.64 82.02 75.3 74.9 84.55
MUS - 85.27 85.63 84.73 79.55 84.87 88.13 - - 81.91
IRI - - - - - - - 97.4 97.7 99.33
WDB - 95.14 95.73 94.84 95.80 93.14 97.10 - - 97.53
WIS 96.0 - - - - - - 97.6 97.4 97.81
SPM 90.2 - - - - - - 92.1 92.2 90.76
WAV 90.6 - - - - - - 79.5 79.7 80.54


