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Abstract

This study proposes a set of new robust parallel hybrid metaheuristic algorithms
based on Artificial Bee Colony (ABC) and Teaching Learning Based Optimiza-
tion (TLBO) for the multi-dimensional numerical problems. The best practices
of ABC and TLBO are implemented to provide robust algorithms on a dis-
tributed memory computation environment using MPI libraries. Island parallel
versions of the proposed hybrid algorithm are observed to obtain much better
results than those of sequential versions. Parallel pseudorandom number gener-
ators are used to provide diverse solution candidates to prevent stagnation into
local optima. The performances of the proposed hybrid algorithms are compared
with eight different metaheuristics algorithms of Particle Swarm Optimization
(PSO), Differential Evolution (DE) variants, ABC variants, and Evolutionary
Algorithm (EA). The empirical results show that the new hybrid parallel algo-
rithms are scalable and the best performing algorithms when compared to the
state-of-the-art metaheuristics.
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1. Introduction

Metaheuristic algorithms can obtain (near)-optimal results if it is not possi-
ble to get the exact solutions of large intractable optimization problems [1][2].
Most of these algorithms are inspired by nature and they are known to be the
state-of-the-art optimization tools to deal with NP-Hard problems. Since meta-
heuristic algorithms are an important area of interest, numerous studies have
been reported and new notable studies emerge recently [3].

The background of individual metaheuristic algorithms are full of many sig-
nificant success stories. They are believed to be the state-of-the-art algorithms
for many optimization problems [4]. However, when they reach their computa-
tional limits, researchers aim to combine different metaheuristics and develop
hybrid metaheuristic algorithms to solve harder optimization problems. Ac-
cording to the No Free Lunch (NFL) theorem [5], hybrid algorithms are able to
solve a wider scope of NP-Hard problems in a better way. The main motivation
for combining different metaheuristics is to complement the missing aspects of
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individual metaheuristics. However, choosing the correct metaheuristics to work
in harmony and improve the optimization performance is not a straightforward
task.

In this study, we introduce new hybrid Artificial Bee Colony (ABC) algo-
rithms combined with Teaching Learning Based Optimization (TLBO) meta-
heuristic and investigate their performances for real parameter optimization
functions. Our main purpose is to deal with the issues of premature conver-
gence, stagnation prevention, diverse search areas, well-balancing the explo-
ration and exploitation phases and parameter tuning while providing the ro-
bustness effectively. These challenges are the most important research areas
of the metaheuristic optimization methods. In this sense, parallel hybrid al-
gorithms can provide good alternatives for the solution to these issues. We
develop new island parallel versions of our hybrid algorithms and show that we
can obtain better results than that of their sequential versions. Particularly,
we propose three new ABC-TLBO hybrid algorithms, island parallel versions
of ABC-TLBO algorithms and the island parallel version of the classical ABC
algorithm.

Artificial Bee Colony (ABC) is a nature-inspired swarm metaheuristic in-
troduced by Karaboga in 2005 [6][7]. The ABC mimics the foraging behavior
of honey bees, and employed, onlooker, and scout bees are simulated in the
ABC metaheuristic [8]. Numerous optimization problems have been solved op-
timally by using the ABC algorithm [9]. Teaching Learning Based Optimization
(TLBO) is a population-based metaheuristic that is proposed by Rao et al. in
2011 [10]. There are learners and a trainer in the optimization environment.
The TLBO promises to have only the algorithm-specific parameters, rapid con-
vergence and easy implementation. Depending on the iterations, TLBO trains
the individuals in the environment by a teacher or interaction of learners. The
classical ABC algorithm uses employed and onlooker bees during the optimiza-
tion process. In our proposed hybrid algorithms, TLBO improves the processes
of the bees by using its training techniques. The details of the proposed algo-
rithms are presented in Section 3.

In this study, we enhance the performance of the classical ABC metaheuristic
by using the training techniques of TLBO. Island parallel hybrid versions of the
proposed algorithms and the classical ABC algorithm are developed with MPI
libraries. Robustness is provided by generating diverse initial search spaces for
candidate solutions in a parallel computation environment. A pseudo-random
number generator is proposed as a seeding mechanism of each processor that
optimizes the selected set of benchmark functions.

In Section 2, related studies on metaheuristic algorithms that solve the multi-
dimensional numerical function optimization are summarized. Section 3 intro-
duces the proposed sequential and parallel hybrid ABC-TLBO algorithms. Sec-
tion 4 presents the evaluation of our experimental results. Concluding remarks
and future work are provided in the last Section.
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2. Related work

In this part of the paper, we review studies related to ABC, TLBO, hybrid
algorithms, and parallel meta-heuristic algorithms.

Two comprehensive surveys on ABC optimization techniques and its ap-
plications are presented by Karaboga et al. [8][11]. Among these techniques,
Karaboda & Basturk propose an ABC algorithm for optimizing multivariable
functions [12][13], and compare its performance with that of two algorithms,
namely genetic algorithm (GA), and particle swarm optimization (PSO). The
results show that the proposed ABC algorithm outperforms the other two meth-
ods. Later, Karaboga & Basturk design a basic variant of the ABC algorithm
for multi-dimensional numerical problems and this has been shown to achieve
competitive results on high-dimensional optimization problems with differential
evolution (DE), PSO and evolutionary algorithm (EA) [14]. In another study,
Akay & Karaboga modify the classical ABC algorithm to improve convergence
rate and examine three control parameters, the modification rate, the scaling
factor, and the limit, for real-parameter optimization [15]. Kıran & Fındık
claim that the classical ABC has the slow convergence drawback [16]. Instead
of updating more design parameters, the authors exploit directional informa-
tion added to ABC algorithms. Performance evaluation is conducted on the
numerical benchmark functions to compare with the classical ABC. Gao & Liu
observe that ABC is poor at exploitation, even though it is good at explo-
ration. Inspired by the DE method, the authors develop a new process based
on a bee that explores for the best of the previous solutions [17]. Introducing a
new selection probability mechanism and a search technique, the performance
of the new algorithm outperforms the other state-of-the-art algorithms. For
further improvement in the exploitation ability, Gao et al. propose a hybrid
approach combining DE and gbest-guided ABC (GABC) techniques. The al-
gorithm speeds up the convergence of ABC by utilizing more prior information
from the previous searches [18]. The improvement in global convergence is pro-
vided by a chaotic opposition-based population initialization method for the
generation of an initial population.

As another variant of the ABC techniques, Du et al. introduce search
equations for improving the convergence speed and prematurity of ABC al-
gorithm [19]. It has been shown that the novel global search strategy and
elite-guided ABC metaheuristic improve feature selection and data clustering
results. Gómez & Rodŕıguez propose multiobjective ABC for the optimization
of resources in parallel systems [20]. They compare the algorithm with deter-
ministic and Nondominated Sorting Genetic Algorithm II (NSGA-II) resource
selection algorithms and verify that better results are obtained in response time
and power consumption.

Lim & Isa propose Teaching and Peer-Learning PSO (TPLPSO) algorithm
which is a novel variant of PSO improved with TLBO. In the teaching phase of
the framework, the particle updates its velocity according to its historical best
and the global best values to improve its fitness. If a particle fails to improve, it
enters into the peer-learning phase, where a guidance particle is selected. The
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search performance is evaluated on 20 benchmark functions and on a real-world
problem. The TPLPSO shows comparable performance with state-of-the-art
PSO algorithms and seven metaheuristic search techniques [21]. Zou et al.
introduce a variant of TLBO, where each learner is trained using the group
mean in the teaching phase, but not using the class mean. In the learning phase
of the model, each learner applies random learning or the quantum-behaved
learning strategy in the group. Experimental evaluation is performed on selected
numerical benchmark functions and each function is evaluated in 10, 30 and 50
dimensions. The results show that the proposed algorithm with a dynamic group
strategy is an effective method for global optimization problems [22]. Dokeroglu
proposes a set of hybrid TLBO algorithms to solve the Quadratic Assignment
problem [23]. TLBO runs well in coordination with Robust Tabu Search engine
while solving this NP-Hard problem.

Hybrid metaheuristic algorithms show significant improvements over clas-
sical versions of metaheuristic algorithms. It is perceived from recent studies
that more efficient behavior and greater flexibility can be provided by hybrid
metaheuristic algorithms [4]. The main goal of our hybrid algorithms is to
make use of the unlike strategies of metaheuristics and benefit from synergy.
This hybridization can provide good features to combine different metaheuris-
tics and solve challenging problems instead of proposing new metaheuristics. In
this sense, our algorithm contributes and introduces the first and only parallel
ABC-TLBO algorithms in the literature.

3. Proposed robust hybrid ABC-TLBO algorithms

In this section, we present our proposed hybrid ABC-TLBO algorithms.
First, a brief introduction about the ABC and TLBO metaheuristics are given.
Then, the sequential and parallel versions of the proposed hybrid ABC-TLBO
algorithms are presented respectively.

3.1. Artificial bee colony metaheuristic

The ABC algorithm is inspired by the collective behavior of honey bee
colonies and has been introduced for solving numerical optimization problems
by Karaboga in 2005. It is one of the most cited new generation metaheuristics
in the literature [6][7][8]. Many problems are solved and optimized by using the
population-based ABC algorithm. The population of the ABC consists of bees
that explore/exploit for the best/optimal food resources (solutions) of given
problems [24]. A solution indicates a food resource and the nectar amount of
each resource represents the quality of each solution. There are three types of
bees in the hive, namely employed, onlooker and scout bees. Employed bees
look for a food source, come back to hive and share their information by danc-
ing. When an employed bee finishes the collection of the nectar, it turns into
a scout bee and looks for other food resources. Onlooker bees watch how the
employed bees dance and choose food sources accordingly. Scout bees explore
for food sources. Initial population is generated randomly in the first phase of
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the ABC algorithm. Figure 1 presents the basic behavior of artificial bees. The
optimization process is repeated by using a set of bees. A forager bee starts as
an unemployed bee having no information about the food sources around the
hive. An ordinary bee can be a scout bee (S) and explore the solution space
or it can watch the dance of other bees and search for new food sources, (R).
The bee gathers the food, comes back to the hive, drops off the nectar. The
bee can become a recruit nest mates (EF1), an uncommitted follower (UF), or
go searching the food without recruiting after bees (EF2) (See Figure 1 for the
behavior of bees of ABC metaheuristic).

The pseudocode of the ABC algorithm is given in Algorithm 1. The execu-
tion is repeated as many as the number of iterations. This is the termination
condition of the algorithm. At the first phase of each iteration, scout bees are
sent to search the problem space randomly and they come back and share their
information with other bees. Onlooker bees choose the best candidates for the
exploitation phase of the algorithm. Employed bees go to the selected (previ-
ously explored solution) locations and the exploitation phase of the algorithm
starts depending on the parameter settings of the ABC metaheuristic. After
the termination of the iterations, the best result is reported as the solution.

Figure 1: The classical behaviour of honeybees looking for nectar.

3.2. Teaching learning-based optimization metaheuristic

TLBO is a population-based metaheuristic algorithm proposed by Rao et
al. in 2011 [10]. The population consists of a group of learners (sample so-
lutions) and a teacher/trainer in a classroom (population). The first phase of
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Algorithm 1: The pseudocode of the ABC metaheuristic [6].

1 int i=0;
2 while (i++ < #max iterations) do

3 Scout bees search for food();
4 Scout bees return to the hive and dance();
5 Onlooker bees evaluate the food sources();
6 Check previously visited food resources();
7 Decide the best food resources();
8 Employed bees travel to the food sources();
9 Return to hive();

10 Collect the solution in the hive();

TLBO is the Teacher Phase and the second phase is the Learner Phase. TLBO
algorithm is a stochastic swarm intelligence algorithm. TLBO has an iterative
evolution process that is similar to standard evolutionary algorithms. The lack
of algorithm-specific parameters, rapid convergence and easy implementation
of TLBO have attracted the attention of many researchers. This new method
is applied to engineering design optimization problems easily [25][26]. Zou et
al. provide a comprehensive survey of prominent TLBO variants and its recent
applications and theoretical analysis [27]. Detailed information about TLBO
can be found in this survey.

The first phase of TLBO is the Teacher Phase and the second phase is
the Learner Phase. The population consists of a group of students/ learners
(sample solutions) and a teacher/trainer in a classroom (population). Learners
in the classroom can obtain knowledge through interaction with a teacher or
their classmates. The best learner is employed as a teacher who is the most
knowledgeable person in the population. Then, the teacher spreads information
to learners. Through this simple training process, the teacher improves the
quality of the learners and also the success of the class. When the improvement
does not get better, a better quality teacher is assigned and a new training
process can be initialized.

In the Teacher Phase, let Mi is the mean, Ti be the teacher at iteration i and
Ti moves Mi towards its own level and the new mean becomes Ti designated as
Mnew. The new solution is modified with respect to the difference between the
current and the new mean given by:

Difference Meani := ri(Mnew − TFMi) (1)

where ri is a random number in the range of [0, 1] and TF is a teaching
factor that decides how the mean value will be updated according to a teacher.
The value of TF is decided randomly in a heuristic step and it can be either one
or two with equal probability using TF = round[1 + rand(0, 1){2-1}].
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The current solution is changed according to this difference by:

Xnew,i := Xold,i +Difference Meani (2)

In the learner phase, students improve their knowledge by the input from
the teacher and the interactions of classmates. A student/learner can randomly
interact with other learners in the classroom and learn new things if the other
classmate has a better knowledge level. A student is randomly selected from
the classroom and this individual trains other randomly selected classmates. If
the new individual is better than the former one, they are replaced. The update
step of two randomly selected learners, Xi 6= Xj , is given by:

if(Xi < Xj) then Xnew,i := Xold,i + ri(Xi −Xj) (3)

if(Xi > Xj) then Xnew,i := Xold,i + ri(Xj −Xi) (4)

3.3. Proposed hybrid ABC-TLBO algorithms

The main framework of the proposed algorithms is the same with that of
ABC metaheuristic obtained from the website of ABC (Karaboga) 1. Two main
phases of the ABC algorithm (onlooker bee search and employed bee search)
are enhanced by the teacher and learner heuristics of the TLBO algorithm. We
develop three different versions of ABC-TLBO according to the heuristics of the
TLBO. In version 1, ABC-TLBO-1, the best bee is selected as a teacher and it
trains the bees in the hive during the employed bees search phase and onlooker
bees search phase. In version 2, ABC-TLBO-2, the bees interact with each
other rather than the best bee in the employed bees search phase, whereas the
best bee trains the others during the onlooker bees search phase. In version 3,
ABC-TLBO-3, the best bee trains in the employed bees search phase, whereas
the other bees interact with each other during the onlooker bees search phase.

Table 1 gives the configuration of the proposed hybrid ABC-TLBO algo-
rithms. Figure 2 presents the flowchart of the proposed algorithm ABC-TLBO.
During the onlooker bee and employed bee search stages of the ABC algorithm,
the techniques of TLBO are configured as reported in Table 1.

Table 1: The configuration of the proposed hybrid ABC-TLBO algorithms. The best bee
is selected as the teacher or the bees interact with each other during the search process of
employed and onlooker bees.

algorithm employed bee process onlooker bee process

ABC-TLBO-1 teacher teacher

ABC-TLBO-2 learner teacher

ABC-TLBO-3 teacher learner

1https://abc.erciyes.edu.tr/
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Figure 2: The flowchart of the proposed ABC-TLBO algorithm.

3.4. Proposed island parallel versions of ABC-TLBO algorithms

According to the evaluations of Manfrin et al. about parallel Ant Colony
optimization algorithms on traveling salesman problem, the performances of
metaheuristic algorithms can be improved significantly with parallel implemen-
tations [28]. Especially, the island parallel versions of the metaheuritics are
reported to be more efficient than the other parallel algorithms in terms of the
computation time deviation from the optimal solutions and low cost of commu-
nication. Therefore, in this part of our study, we propose island parallel versions
of the ABC-TLBO algorithms (see above) for the solution of the problem. Figure
3 shows the communication structure of many hives in a parallel computation
environment. The slave processors (hives) initialize their populations and indi-
vidually optimize the solution of the problem without any communication until
the end of the iterations. The slaves use a diversified pseudorandom number
generator that produces a different starting point at each hive, which is a very
efficient way of exploring the global space of the problem. After finding the
solution of the local populations, slaves send their results to the master pro-
cessor. The master hive collects the best solutions (nectars) of the slave hives.
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Algorithm 2 gives the details of the proposed parallel P-ABC-TLBO algorithm.
Figure 3 shows the structure of hives in the environment. See Figure 4 for the
generic flowchart of the proposed parallel P-ABC-TLBO algorithms.

Algorithm 2: Generic pseudocode of the P-ABC-TLBO algorithms.

1 if (I am a slave hive) then

2 Construct an empty database for food resources();

3 int i=0;
4 while (i++ < #max iterations) do

5 Scout bees search for food();
6 Scout bees return to the hive and dance();
7 Onlooker bees evaluate the food sources();

8 Check previously visited food resources();
9 Decide the best food resources();

10 Employed bees travel to the food sources();
11 Return to hive();
12 Collect the solution in the hive();
13 Send the best result to the master node();

14 if (I am the master hive) then

15 Receive the solutions from the slaves();
16 Report the best solution();
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Figure 3: The communication structure of hives between master and slaves.

Figure 4: The flowchart of the proposed parallel P-ABC-TLBO algorithm.
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4. Performance Evaluation of the Experimental Results

We give details of our experimental setup, benchmark problem instances,
solution quality of the results, the execution time of our algorithms, comparison
with state-of-the-art algorithms, speed-up, and scalability performance of the
proposed parallel P-ABC-TLBO algorithms.

4.1. Experimental setup and problem instances

Our experiments are performed on a high-performance cluster (HPC) com-
puter, HP ProLiant DL585 G7, that has AMD Opteron 6212 CPU running at
2.6 GHz and having 8 cores. CPU has 64-bit computing capacity and AMD
SR5690 chipset. The server uses 128 GB PC3-10600 RAM and 1.5 TB hard
disk. The software comprises; a Scientific Linux v4.5 64-bit operating system,
Open MPI v1.2.4, and C++ programming language.

In order to evaluate the performance of the proposed algorithms, five well-
known functions are selected among continuous benchmark functions used for
testing the optimization algorithms [29]. These functions are low dimensional
Schaffer and Sphere, and high dimensional Griewank, Rastrigin, and Rosenbrock
functions [30]. The selected benchmark functions are tested 30 times and their
best/average results and execution times are reported.

The Schaffer function, f1(~x), is a member of continuous multimodal func-
tion family defined in a two-dimensional (2D) space and it is evaluated on the
square x, y ∈ [-100, 100] (see Figure 5). The function has a large number of
local minima and a global optimum at x∗ = (0, 0). The Sphere function, f2(~x),
is convex and unimodal (see Figure 6). It is defined in a five-dimensional (5D)
space and evaluated within the search region defined by [-100, 100]. The global
optimum of the function is at x∗ = (0, . . . , 0). The Griewank function, f3(~x), is
multimodal with many local optima, which are distributed regularly (see Fig-
ure 7). The function is evaluated on a 50 dimensional (50D) search space and
on the hypercube xi ∈ [-600, 600]. Although the general view of the function
suggests convex function, zoom in view suggests the existence of numerous local
minima. The function has one global optimum at x∗ = (0, . . . , 0). The Rastri-
gin function, f4(~x), is multimodal with regularly distributed local optima (see
Figure 8). The function is evaluated on a 50 dimensional (50D) search space
and within the search region defined by hypercube xi ∈ [-5.12, 5.12]. Similarly,
the global optimum of the function is located at x∗ = (0, . . . , 0). The Rosen-
brock function, f5(~x), is a multimodal function with a global minimum located
at x∗ = (1, . . . , 1) [31] (see Figure 9 for two-dimensional unimodal version).
The function is evaluated on a 50 dimensional (50D) search space within the
search region defined by [-50, 50]. Table 2 gives detailed information about the
functions used in the experiments.

In Table 3, the parameters of the algorithms are presented [14][29]. CF is
the crossover factor of DE, f is the scaling factor, ω is the inertia weight, ϕmin

, ϕmax are the lower and upper bounds of the velocity rule weight, pc is the
crossover rate for EA, pm is the mutation rate, σm is the mutation variance,
n is the elite size, n0 is the number of onlooker bees, ne is the number of
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Table 2: Details of the benchmark functions used in the experiments.

name Formula Range

Schaffer f1(~x) 0.5 +
sin2(

√
x2 + y2)− 0.5

(1 + 0.001(x2 + y2))2
[-100,100]D

Sphere f2(~x)

n∑
i=1

x2i [-100,100]D

Griewank f3(~x) 1
4000

(
n∑

i=1

(xi − 100)2

)
−

(
n∏

i=1

cos(
xi − 100√

i
)

)
+ 1 [-600,600]D

Rastrigin f4(~x)
n∑

i=1

(x2i − 10 cos(2πxi) + 10) [-5.12,5.12]D

Rosenbrock f5(~x)
n−1∑
i=1

100(xi+1 − x2i )2 + (xi − 1)2 [-50,50]D

Figure 5: Schaffer function surface plots (for ranges [-10, 10] and [-100, 100]) and contour
lines.

Figure 6: Sphere function surface plots (for ranges [-10, 10] and [-100, 100]) and contour lines
respectively.

12



Figure 7: Griewank function surface plots (for ranges [-10, 10] and [-100, 100]) and contour
lines.

Figure 8: Rastrigin function surface plots (for ranges [-10, 10] and [-5.12, 5.12]) and contour
lines.

Figure 9: Rosenbrock function surface plots (for ranges [-2, 2] and [-50, 50]) and contour lines.
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employed bees, ns is the number of scout bees, D is the number of dimensions
in the problem. In our proposed algorithms, the settings provided by Karaboga
& Basturk are used [14] (See Table 3).

Table 3: Parameters used in the algorithms [14][29].

DE PSO EA ABC
pop. size 50 pop. size 20 pop. size 100 colony size 100
CF 0.8 ω 1.0 → 0.7 pc 1.0 n0 50% of the colony
f 0.5 ϕmin 0 pm 0.3 ne 50% of the colony
f ϕmax 2.0 σm 0.01 ns 1

n 10 Limit ne x D

Table 4 presents the results of the experiments performed with algorithms
DE [14], PSO [14], EA [14], ABC [14], directed-ABC [16], DE with gbest-
guided ABC (DGABC) [18], JADE [32], Self-adaptive DE (SaDE) [33], and
the average of proposed ABC-TLBO. The values give the average optimization
results of 30 different test runs. The results less than E-12 are reported as
0 ± 0. All the algorithms (except PSO) find the optimal solutions for the
function f1(~x) and f2(~x). For the function f3(~x), DE, ABC, and DGABC
are the best performing algorithms. For the function f4(~x), our algorithms
are the best performing ones with DE and classical ABC. For the function
f5(~x), DGABC is the best performing one where ABC-TLBO is the fourth best
performing algorithm among the eight state-of-the-art algorithms. When the
overall performance of the algorithms is analyzed, DGABC, SaDE, and ABC-
TLBO are the best performing three algorithms.

When the proposed ABC and hybrid ABC-TLBO versions of the algorithms
are analyzed, for the functions Schaffer and Sphere, the ABC is observed to be
the worst performing one. For functions Griewank and Rosenbrock, the ABC is
the best performing one. Figures 10, 11, 12, and 13 present the solution quality
of algorithms ABC, ABC-TLBO-V1, ABC-TLBO-V2, and ABC-TLBO-V3 for
the functions, Schaffer, Sphere, Griewank, and Rosenbrock respectively. The
average solutions of the algorithms (with 30 runs) are reported in Table 5. For
the function Rastrigin, all the algorithms report the optimal solutions.

In order to get better results by our proposed hybrid ABC-TLBO algorithms,
we implement their island parallel versions. We observe much better results than
those of sequential ABC and ABC-TLBO algorithms.
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Table 4: The optimization results obtained by DE, PSO, EA, ABC, directed-ABC, DE with
gbest-guided ABC (DGABC), (JADE), Self-adaptive DE (SaDE), and our ABC-TLBO al-
gorithms. The results of the ABC-TLBO algorithms are the average of our proposed three
algorithms.

algorithm f1(~x) f2(~x) f3(~x) f4(~x) f5(~x)

DE 0 ± 0 0 ± 0 0 ± 0 0 ± 0 35.3176 ± 0.27444

PSO 0.0045±0.0009 2.5113E-8±0 1.5490±0.0669 13.1162±1.4481 5142.45±2929.47

EA 0 ± 0 0 ± 0 0.0062±0.0013 32.667±1.94017 79.818±10.447

ABC 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.069 ± 0.0372

directed-ABC 0 ± 0 0 ± 0 2.59E-04 2.42E-01 1.02E+01

DGABC 0 ± 0 0 ± 0 0 ± 0 3.26E-11 1.59E-03

JADE 0 ± 0 0 ± 0 1.57E-08 1.33E-01 1.59E-01

SaDE 0 ± 0 0 ± 0 2.52E-09 2.43E+00 7.98E-02

ABC-TLBO 0 ± 0 0 ± 0 1.50E-08 0 ± 0 0.345 ± 0.0411

Table 5: The average optimization results of the algorithms for the functions.

function ABC ABC-TLBO-V1 ABC-TLBO-V2 ABC-TLBO-V3

f1(~x) 7.40E-18 0.00E+00 0.00E+00 0.00E+00

f2(~x) 2.11E-17 1.56E-17 1.54E-17 1.70E-17

f3(~x) 8.51E-17 4.49E-08 1.48E-16 8.88E-17

f4(~x) 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f5(~x) 6.90E-02 6.69E-01 2.70E-01 9.67E-02

Figure 10: The comparison of optimization results for Schaffer function f1(~x).
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Figure 11: The comparison of optimization results for Sphere function f2(~x).

Figure 12: The comparison of optimization results for Griewank function f3(~x).

Figure 13: The comparison of optimization results for Rosenbrock function f5(~x).
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Figure 14: The effect of increasing the number of processors on the Rosenbrock function with
P-ABC-TLBO-V1 algorithm.

4.2. The effect of increasing the number of processors

In this part of our experiments, we observe the effect of increasing the number
of processors during the optimization. Figure 14 presents the performance of
the P-ABC-TLBO-V1 algorithm on the Rosenbrock function which is the most
challenging one among five functions. The number of processors is increased
from 4 to 256 by doubling the number of processors gradually. From the top
chart curve to the bottom, the figure shows the performance of the algorithm
with 4 to 256 processors respectively. With 4 and 256 processors, P-ABC-
TLBO-V1 algorithm reports 9.22E-02 and 4.06E-03 values respectively. This
shows a 95.59% improvement in the optimization results of the algorithm.

The same performance is observed with all the proposed parallel algorithms.
As we add more processors, the algorithms gradually increase their perfor-
mances, which is one of the main contributions of our study. It is still pos-
sible to add more processors and obtain better results by the proposed parallel
algorithms.

4.3. The performance of the proposed parallel algorithms

The performances of the proposed parallel algorithms P-ABC, P-ABC-TLBO-
V1, P-ABC-TLBO-V2, and P-ABC-TLBO-V3 are presented in Tables 6, 7, and
8 for the functions Sphere, Griewank, and Rosenbrock respectively. The results
show the average values over 30 runs with the increasing number of processors
from 4 to 256 by doubling the number of processors gradually. The best per-
forming algorithm is the P-ABC-TLBO-V2 for the Sphere function. For the
Griewank function, P-ABC is the best proposed parallel algorithm and for the
Rosenbrock function, P-ABC-TLBO-V3 outperforms the other algorithms. For
the Schaffer function, the ABC is the only algorithm that cannot report the
optimal results. The P-ABC reports the optimal values by using 4 processors
for this function.

The overall results of the island parallel hybrid algorithms are much better
than the state-of-the-art algorithms. Of course, the parallel island versions of
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the other metaheuristic algorithms can be implemented easily and compared
with the algorithms proposed in this study. It can be another area of research.
Our main goal is to show the efficiency of the parallel island algorithms for these
multi-dimensional numerical optimization problems.

Table 6: The fitness values of the parallel algorithms for the Sphere function. The columns
show the number of processors used during the optimization.

algorithm 4 8 16 32 64 128 256

P-ABC 9.96E-18 7.48E-18 6.08E-18 4.60E-18 3.37E-18 2.36E-18 1.91E-18

P-ABC-TLBO-V1 8.19E-18 6.48E-18 5.23E-18 4.07E-18 2.54E-18 1.86E-18 1.41E-18

P-ABC-TLBO-V2 6.34E-20 3.30E-20 1.09E-20 7.21E-21 3.96E-21 2.06E-21 1.25E-21

P-ABC-TLBO-V3 8.32E-18 6.82E-18 5.24E-18 3.77E-18 2.70E-18 2.16E-18 1.57E-18

Table 7: The fitness values of the parallel algorithms for the Griewank function. The columns
show the number of processors used during the optimization.

algorithm 4 8 16 32 64 128 256

P-ABC 1.85E-17 3.83E-18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

P-ABC-TLBO-V1 1.26E-16 6.13E-17 3.45E-17 7.93E-18 0.00E+00 0.00E+00 0.00E+00

P-ABC-TLBO-V2 4.07E-17 1.91E-17 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

P-ABC-TLBO-V3 2.96E-17 3.83E-18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table 8: The fitness values of the parallel algorithms for the Rosenbrock function. The
columns show the number of processors used during the optimization.

algorithm 4 8 16 32 64 128 256

P-ABC 2.59E-02 1.06E-02 4.28E-03 2.80E-03 1.53E-03 9.26E-04 6.11E-04

P-ABC-TLBO-V1 9.22E-02 6.31E-02 3.59E-02 1.80E-02 9.16E-03 6.02E-03 4.06E-03

P-ABC-TLBO-V2 1.25E-02 7.02E-03 2.53E-03 1.10E-03 7.84E-04 4.07E-04 2.15E-04

P-ABC-TLBO-V3 1.14E-02 6.25E-03 2.51E-03 1.29E-03 5.13E-04 3.27E-04 1.81E-04

4.4. Speed-up and scalability analysis of the algorithms

The speed-up and scalability are crucial criteria for parallel algorithms.
Therefore, we analyze the executions time of the algorithms according to the in-
creasing number of processors. The execution times of the functions f1 through
f5 are 0.649, 0.323, 0.504, 0.424, and 39.4 seconds for 30 runs respectively. The
execution times are almost similar for the sequential versions of ABC-TLBO
algorithms. Since the behavior of island parallel algorithms does not need to
send many messages, only a 10% execution time overhead is observed when the
algorithm is run with 256 processors. Therefore, an almost linear speed-up is
provided by the proposed algorithms.
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5. Conclusions and future work

In this study, we propose robust hybrid parallel ABC-TLBO algorithms for
the optimization of the multi-dimensional numeric problems. Metaheuristic
algorithms can obtain good results when it is not possible to solve NP-Hard
problems exactly. Beyond that, it is applicable to enhance their intelligence
by combining them with other metaheuristics and using parallel computation
techniques. Robustness can be provided effectively by using these advanced
methods. Mainly, our aim in this study is to draw the attention of researchers
to parallel hybrid metaheuristic algorithms.

The performances of our proposed algorithms are compared with that of
PSO, DE variants, ABC variants, and EA for multi-dimensional and multimodal
numeric problems. The experimental evaluations verify that the proposed al-
gorithms perform better than the state-of-the-art algorithms. Island parallel
versions of the ABC-TLBO algorithms can perform better than their sequential
(one-processor) versions. It has been shown that their performances are getting
increased with the addition of new processors while the execution time of the
parallel algorithms is observed to be scalable.

As future work, we believe that the studies on hybrid metaheuristic algo-
rithms will continue to exist and hyperheuristic algorithms will be an important
research area. With the arrival of new metaheuristics, their hybridization will
gain more interest from researchers. Every new metaheuristic can be a good
opportunity for novel parallel hybrid metaheuristics. Therefore, we intend to
combine the techniques of recent metaheuristics, Grey Wolf, Whale Optimiza-
tion, and ABC to provide better parallel hybrid/hyperheuristic algorithms. The
other numeric minimization problems (Alpine, Ackley, Penalized 1, Penalized 2,
levy, Quartic, and Weierstrass) can also be solved by using our proposed hybrid
parallel metaheuristic algorithms.
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