Introduction Related Work Model Experiments Conclusion

NEURAL PROGRAMMER-INTERPRETERS 1

Presented by

Fethiye Irmak Doğan

¹Reed, S., and De Freitas, N. (2015). Neural programmer-interpreters. arXiv.

Central Challenges of AI

• Teaching machine to learn new programs

Central Challenges of AI

- Teaching machine to learn new programs
- Execute these programs automatically

Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional neural network that learns how to

represent a program

Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional neural network that learns how to

- represent a program
- execute a program (as an interpreter)

Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional neural network that learns how to

- represent a program
- execute a program (as an interpreter)
- generate new program embeddings (as a **programmer**)

Compositional architecture of NPI

Task agnostic recurrent core: LSTM based sequence model which is a single core module with the shared parameters across all tasks

Compositional architecture of NPI

Task agnostic recurrent core: LSTM based sequence model which is a single core module with the shared parameters across all tasks

Persistant key-value program memory : Learnable key-value memory of program embeddings which provides learning and reusing programs

Compositional architecture of NPI

Task agnostic recurrent core: LSTM based sequence model which is a single core module with the shared parameters across all tasks

Persistant key-value program memory : Learnable key-value memory of program embeddings which provides learning and reusing programs

Domain-specific encoders: encoder that enables NPI to operate in diverse environments

Curriculum Learning²: Start small, learn easier aspects of the task or easier subtasks, and then gradually increase the difficulty level.

²Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages 41-48

Curriculum Learning²: Start small, learn easier aspects of the task or easier subtasks, and then gradually increase the difficulty level.

Rich Supervision: Rather than using large number of relatively weak labels, exploit from the fewer fully supervised execution traces

²Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages 41-48

Related Work

Dynamically Programmable Networks

 activations of one network become the weights of a second network

Related Work

Dynamically Programmable Networks

 activations of one network become the weights of a second network

Neural Turing Machine

• learning and executing simple programs

Related Work

Dynamically Programmable Networks

 activations of one network become the weights of a second network

Neural Turing Machine

learning and executing simple programs

Program Induction

• inducing a program given example input and output pairs

Novelties of NPI

 being trained on execution traces instead of input and output pairs

Novelties of NPI

- being trained on execution traces instead of input and output pairs
- incorporating compositional structure into the network using a program memory

Novelties of NPI

- being trained on execution traces instead of input and output pairs
- incorporating compositional structure into the network using a program memory
- learning new programs by combining sub-programs

NPI Core acts as a **router** between programs and there is a single inference core shared by arbitrary programs

Figure: Example execution trace of single-digit addition

Figure: Example execution trace of single-digit addition

NPI Core is conditioned on

current state observations:

Figure: Example execution trace of single-digit addition

NPI Core is conditioned on

- current state observations:
 - learnable program embedding, program arguments, feature representation of the environment

Figure: Example execution trace of single-digit addition

NPI Core is conditioned on

- current state observations:
 - learnable program embedding, program arguments, feature representation of the environment
- previous hidden unit states

Figure: Example execution trace of single-digit addition

NPI Core outputs

key indicating what program to call next

Figure: Example execution trace of single-digit addition

NPI Core outputs

- key indicating what program to call next
- probability of ending the current program

Figure: Example execution trace of single-digit addition

NPI Core outputs

- key indicating what program to call next
- probability of ending the current program
- argument for the following program (passed by reference or value)

Program Embedding Memory

Different programs correspond to different embeddings stored in a persistent memory

Figure: Example execution trace of single-digit addition

Feed-Forward steps of program inference

$$s_t = f_{enc}(e_t, a_t)$$

Feed-Forward steps of program inference

$$s_t = f_{enc}(e_t, a_t)$$

$$h_t = f_{lstm}(s_t, p_t, h_{t-1})$$

Feed-Forward steps of program inference

```
\mathbf{e_t}: environment observation at time \mathbf{t} = \mathbf{a_t}: current program argument \mathbf{s_t}: state encoding \mathbf{p_t}: program embedding \mathbf{h_{t-1}}: previous hidden unit \mathbf{c_{t-1}}: previous cell unit \mathbf{r_t}: end of program probability \mathbf{k_t}: program key embedding \mathbf{a_t}: output arguments at time \mathbf{t_t}
```

 r_t :end of program probability k_t : program key embedding a_t :output arguments at f_{enc} : domain specific encoder f_{letm} : LSTM mapping

 f_{end} : probability of finishing the program f_{prog} : key embedding for next program f_{arg} : arguments to next program

$$s_t = f_{enc}(e_t, a_t)$$

 $h_t = f_{lstm}(s_t, p_t, h_{t-1})$
 $r_t = f_{end}(h_t), k_t = f_{prog}(h_t), a_{t+1} = f_{arg}(h_t)$

Program Embedding

 \mathbf{k}_t : program key embedding $\ \mathbf{i}$: program ID $\ \mathbf{p}_{t+1}$: next program embedding $\ \mathbf{M}^{key}$: key embeddings which stores all the program keys $\ \mathbf{M}^{prog}$: program embeddings

$$i^* = \underset{i=1..N}{\arg\max} (M_{i,:}^{\text{key}})^T k_t$$
 , $p_{t+1} = M_{i^*,:}^{\text{prog}}$

Environmental State

 e_t : environment observation at time t p_t : program embedding a_t : output arguments at time t f_{env} : domain specific transition mapping e_{t+1} : next environmental state

$$e_{t+1} \sim f_{env}(e_t, p_t, a_t)$$

Inference Algorithm

Algorithm 1 Neural programming inference

```
1: Inputs: Environment observation e, program id i, arguments a, stop threshold \alpha
   function RUN(i, a)
3:
        h \leftarrow \mathbf{0}, r \leftarrow 0, p \leftarrow M_{i}^{\text{prog}}
                                                                                ▶ Init LSTM and return probability.
4:
        while r < \alpha do
             s \leftarrow f_{enc}(e, a), h \leftarrow f_{lstm}(s, p, h)
                                                                                        ⊳ Feed-forward NPI one step.
5:
6:
             r \leftarrow f_{end}(h), k \leftarrow f_{prog}(h), a_2 \leftarrow f_{arg}(h)
             i_2 \leftarrow \arg\max(M_i^{\text{key}})^T k
7:
                                                                                   ▷ Decide the next program to run.
                     i=1..N
8:
             if i == ACT then e \leftarrow f_{env}(e, p, a)
                                                                         ▶ Update the environment based on ACT.
                                                                          \triangleright Run subprogram i_2 with arguments a_2
9:
             else RUN(i_2, a_2)
```

Inference Algorithm

Algorithm 1 Neural programming inference

```
1: Inputs: Environment observation e, program id i, arguments a, stop threshold \alpha
   function RUN(i, a)
3:
         h \leftarrow \mathbf{0}, r \leftarrow 0, p \leftarrow M_{i}^{\text{prog}}
                                                                                 ▶ Init LSTM and return probability.
4:
         while r < \alpha do
             s \leftarrow f_{enc}(e, a), h \leftarrow f_{lstm}(s, p, h)
5:
                                                                                         ▶ Feed-forward NPI one step.
6:
             r \leftarrow f_{end}(h), k \leftarrow f_{prog}(h), a_2 \leftarrow f_{arg}(h)
             i_2 \leftarrow \arg\max(M_i^{\text{key}})^T k
7:
                                                                                    Decide the next program to run.
8:
             if i == ACT then e \leftarrow f_{env}(e, p, a)

    □ Update the environment based on ACT.

9:
             else RUN(i_2, a_2)
                                                                           \triangleright Run subprogram i_2 with arguments a_2
```

• actions are encapsulated into ACT program shared across tasks and indicated by the NPI-generated arguments a_t

Inference Algorithm

Algorithm 1 Neural programming inference

```
1: Inputs: Environment observation e, program id i, arguments a, stop threshold \alpha
   function RUN(i, a)
3:
         h \leftarrow \mathbf{0}, r \leftarrow 0, p \leftarrow M_{i}^{\text{prog}}
                                                                                 ▶ Init LSTM and return probability.
4:
         while r < \alpha do
             s \leftarrow f_{enc}(e, a), h \leftarrow f_{lstm}(s, p, h)
5:
                                                                                         ▶ Feed-forward NPI one step.
6:
             r \leftarrow f_{end}(h), k \leftarrow f_{prog}(h), a_2 \leftarrow f_{arg}(h)
             i_2 \leftarrow \arg\max(M_i^{\text{key}})^T k
7:
                                                                                    Decide the next program to run.
8:
             if i == ACT then e \leftarrow f_{env}(e, p, a)

    □ Update the environment based on ACT.

9:
             else RUN(i_2, a_2)
                                                                           \triangleright Run subprogram i_2 with arguments a_2
```

- actions are encapsulated into ACT program shared across tasks and indicated by the NPI-generated arguments a_t
- core module is completely agnostic to the data modality used in the state encoding

Training

$$arepsilon_t^{inp}:\{e_t,i_t,a_t\}$$
 and $arepsilon_t^{out}:\{i_{t+1},a_{t+1},r_t\}$ are the execution traces

Training

 $arepsilon_t^{inp}: \{e_t, i_t, a_t\}$ and $arepsilon_t^{out}: \{i_{t+1}, a_{t+1}, r_t\}$ are the execution traces i_t and i_{t+1} are program IDs and row indices in M^{key} M^{prog} of the programs to run at time t and t+1

Training

 $arepsilon_t^{inp}:\{e_t,i_t,a_t\}$ and $arepsilon_t^{out}:\{i_{t+1},a_{t+1},r_t\}$ are the execution traces

 i_t and i_{t+1} are program IDs and row indices in M^{key} M^{prog} of the programs to run at time t and t+1

$$\theta^* = \arg\max_{\theta} \sum_{(\xi^{inp}, \xi^{out})} \log P(\xi^{out} | \xi^{inp}; \theta)$$

 $arepsilon_t^{inp}$: $\{e_t,i_t,a_t\}$ and $arepsilon_t^{out}$: $\{i_{t+1},a_{t+1},r_t\}$ are the execution traces

 i_t and i_{t+1} are program IDs and row indices in M^{key} M^{prog} of the programs to run at time t and t+1

$$\theta^* = \arg\max_{\theta} \sum_{(\xi^{inp}, \xi^{out})} \log P(\xi^{out} | \xi^{inp}; \theta)$$

since traces are **variable length** above equation can be written as:

 $arepsilon_t^{inp}$: $\{e_t,i_t,a_t\}$ and $arepsilon_t^{out}$: $\{i_{t+1},a_{t+1},r_t\}$ are the execution traces

 i_t and i_{t+1} are program IDs and row indices in M^{key} M^{prog} of the programs to run at time t and t+1

$$\theta^* = \arg\max_{\theta} \sum_{(\xi^{inp}, \xi^{out})} \log P(\xi^{out} | \xi^{inp}; \theta)$$

since traces are **variable length** above equation can be written as:

$$\log P(\xi_{out}|\xi_{inp};\theta) = \sum_{t=1}^{T} \log P(\xi_{t}^{out}|\xi_{1}^{inp},...,\xi_{t}^{inp};\theta)$$

 $arepsilon_t^{inp}$: $\{e_t,i_t,a_t\}$ and $arepsilon_t^{out}$: $\{i_{t+1},a_{t+1},r_t\}$ are the execution traces

 i_t and i_{t+1} are program IDs and row indices in M^{key} M^{prog} of the programs to run at time t and t+1

$$\theta^* = \arg\max_{\theta} \sum_{(\xi^{inp}, \xi^{out})} \log P(\xi^{out} | \xi^{inp}; \theta)$$

since traces are **variable length** above equation can be written as:

$$\log P(\xi_{out}|\xi_{inp};\theta) = \sum_{t=1}^{T} \log P(\xi_{t}^{out}|\xi_{1}^{inp},...,\xi_{t}^{inp};\theta)$$

since **hidden unit activations** are capable of capturing temporal dependencies, right hand side can be written as:

 $arepsilon_t^{inp}:\{e_t,i_t,a_t\}$ and $arepsilon_t^{out}:\{i_{t+1},a_{t+1},r_t\}$ are the execution traces

 i_t and i_{t+1} are program IDs and row indices in M^{key} M^{prog} of the programs to run at time t and t+1

$$\theta^* = \arg\max_{\theta} \sum_{(\xi^{inp}, \xi^{out})} \log P(\xi^{out} | \xi^{inp}; \theta)$$

since traces are **variable length** above equation can be written as:

$$\log P(\xi_{out}|\xi_{inp};\theta) = \sum_{t=1}^{T} \log P(\xi_{t}^{out}|\xi_{1}^{inp},...,\xi_{t}^{inp};\theta)$$

since **hidden unit activations** are capable of capturing temporal dependencies, right hand side can be written as:

$$\log P(\xi_t^{out}|\xi_1^{inp},...,\xi_t^{inp}) = \log P(i_{t+1}|h_t) + \log P(a_{t+1}|h_t) + \log P(r_t|h_t)$$

• Adaptive curriculum: sample frequency of a program is determined by model's current prediction error in that program

- Adaptive curriculum: sample frequency of a program is determined by model's current prediction error in that program
 - forces the model to focus on learning the program worst in execution

- Adaptive curriculum: sample frequency of a program is determined by model's current prediction error in that program
 - forces the model to focus on learning the program worst in execution
- Memory advantage thanks to parallel execution in sub-programs

• Task: read in the digits of two base-10 numbers and produce the digits of the answer

³https://en.wikipedia.org/wiki/One-hot

- Task: read in the digits of two base-10 numbers and produce the digits of the answer
- Four pointers: one for each of the two input numbers, one for the carry, and another to write the output

³https://en.wikipedia.org/wiki/One-hot

- Task: read in the digits of two base-10 numbers and produce the digits of the answer
- Four pointers: one for each of the two input numbers, one for the carry, and another to write the output
- Model sees the current values at each pointer locations as 1-of-K encodings ³ (K=10)

³https://en.wikipedia.org/wiki/One-hot

- Task: read in the digits of two base-10 numbers and produce the digits of the answer
- Four pointers: one for each of the two input numbers, one for the carry, and another to write the output
- Model sees the current values at each pointer locations as 1-of-K encodings ³ (K=10)

$$f_{enc}(Q, i_1, i_2, i_3, i_4, a_t) = MLP([Q(1, i_1), Q(2, i_2), Q(3, i_3), Q(4, i_4), a_t(1), a_t(2), a_t(3)])$$

 $Q \in R^{4xNxK}$ is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of columns (digits) and K is the one-hot encoding dimension

³https://en.wikipedia.org/wiki/One-hot

Program	Descriptions	Calls
ADD	Perform multi-digit addition	ADD1, LSHIFT
ADD1	Perform single-digit addition	ACT, CARRY
CARRY	Mark a 1 in the carry row one unit left	ACT
LSHIFT	Shift a specified pointer one step left	ACT
RSHIFT	Shift a specified pointer one step right	ACT
ACT	Move a pointer or write to the scratch pad	-

				•	
input 1	0	0	0	9	6
input 2	0	0	1	2	5
carry	0	0	1	1	1
output	0	0	0	2	1

(a) Example scratch pad and pointers used for computing "96 + 125 = 221". Carry step is being implemented.

ADD —		
ADD1	→ADD1	- ADD1
WRITE OUT 1	WRITE OUT 2	WRITE OUT 2
CARRY	CARRY	LSHIFT
PTR CARRY LEFT	PTR CARRY LEFT	PTR INP1 LEFT
WRITE CARRY 1	WRITE CARRY 1	PTR INP2 LEFT
PTR CARRY RIGHT	PTR CARRY RIGHT	PTR CARRY LEF
LSHIFT	LSHIFT	PTR OUT LEFT
PTR INP1 LEFT	PTR INP1 LEFT	
PTR INP2 LEFT	PTR INP2 LEFT	
PTR CARRY LEFT	PTR CARRY LEFT	
PTR OUT LEFT	PTR OUT LEFT	

(b) Actual trace of addition program generated by our model on the problem shown to the left. Note that we substituted the ACT calls in the trace with more human-readable steps.

Figure: Illustration of the addition environment

Sorting

• Task: comparing each pair of adjacent items and swaps them if they are in the wrong order (Bubble Sort ⁴)

⁴https://en.wikipedia.org/wiki/Bubble_sort

Sorting

Task: comparing each pair of adjacent items and swaps them
if they are in the wrong order (Bubble Sort ⁴)

$$f_{enc}(Q, i_1, i_2, a_t) = MLP([Q(1, i_1), Q(1, i_2), a_t(1), a_t(2), a_t(3)])$$

 $Q \in \mathit{R}^{1xNxK}$ is the scratch pad, N is the array length and K is the array entry embedding dimension

⁴https://en.wikipedia.org/wiki/Bubble_sort

Sorting

BUBBLESORT	Perform bubble sort (ascending order)	BUBBLE, RESET
BUBBLE	Perform one sweep of pointers left to right	ACT, BSTEP
RESET	Move both pointers all the way left	LSHIFT
BSTEP	Conditionally swap and advance pointers	COMPSWAP, RSHIFT
COMPSWAP	Conditionally swap two elements	ACT
LSHIFT	Shift a specified pointer one step left	ACT
RSHIFT	Shift a specified pointer one step right	ACT
ACT	Swap two values at pointer locations or move a pointer	-

(a) Example scratch pad and pointers used for sorting. Several steps of the BUBBLE subprogram are shown.

. BUBBLESORT		_
*BUBBLE	RESET	→BUBBLE
PTR 2 RIGHT	LSHIFT	PTR 2 RIGHT
BSTEP	PTR 1 LEFT	BSTEP
COMPSWAP	PTR 2 LEFT	COMPSWAP
SWAP 12	LSHIFT	SWAP 1 2
RSHIFT	PTR 1 LEFT	RSHIFT
PTR 1 RIGHT	PTR 2 LEFT	PTR 1 RIGH
PTR 2 RIGHT		PTR 2 RIGHT
	LSHIFT	
BSTEP	PTR 1 LEFT	BSTEP
COMPSWAP	PTR 2 LEFT	COMPSWAP
RSHIFT		RSHIFT
PTR 1 RIGHT		PTR 1 RIGH
PTR 2 RIGHT		PTR 2 RIGH

(b) Excerpt from the trace of the learned bubblesort program.

Figure: Illustration of the sorting environment

• **Task:** learn a visual program that canonicalizes the model with respect to its pose

- **Task:** learn a visual program that canonicalizes the model with respect to its pose
- Nontrivial problem: different starting positions and different car models

- Task: learn a visual program that canonicalizes the model with respect to its pose
- Nontrivial problem: different starting positions and different car models

$$f_{enc}(Q,x,i_1,i_2,a_t) = MLP([Q(1,i_1),Q(2,i_2),f_{CNN}(x),a_t(1),a_t(2),a_t(3)])$$

 $x \in R^{HxWx3}$ is the car rendering and $Q \in R^{2x1xK}$ is the scratch pad, first dimension of Q corresponds to i_1 , i_2 (fixed at 1) which are the pointer locations of the azimuth and elevation and K(=24) is the one-hot encoding dimension of pose coordinates

GOTO	Change 3D car pose to match the target	HGOTO, VGOTO
HGOTO	Move horizontally to the target angle	LGOTO, RGOTO
LGOTO	Move left to match the target angle	ACT
RGOTO	Move right to match the target angle	ACT
VGOTO	Move vertically to the target elevation	UGOTO, DGOTO
UGOTO	Move up to match the target elevation	ACT
DGOTO	Move down to match the target elevation	ACT
ACT	Move camera 15° up, down, left or right	-

Figure: canonicalization of several different test set cars

Sample Complexity on Bubble Sort Problem

• Memory requirements is reduced from $O(n^2)$ to O(n) thanks to compositional structure of the model

Sample Complexity on Bubble Sort Problem

- Memory requirements is reduced from $O(n^2)$ to O(n) thanks to compositional structure of the model
- Number of required training samples are also reduced:

Figure: Test accuracy by the varying sample complexity

• Training the model with variable-sized input (single-digit numbers from length 2 to length 20)

- Training the model with variable-sized input (single-digit numbers from length 2 to length 20)
- Adding a third pointer that acts as a counter to handle variable-sized inputs

- Training the model with variable-sized input (single-digit numbers from length 2 to length 20)
- Adding a third pointer that acts as a counter to handle variable-sized inputs
- Checking the success of the model on the inputs of previously unseen size to check how much the problem is learned

- Training the model with variable-sized input (single-digit numbers from length 2 to length 20)
- Adding a third pointer that acts as a counter to handle variable-sized inputs
- Checking the success of the model on the inputs of previously unseen size to check how much the problem is learned

Figure: Strong vs. weak generalization

Generalization on 3D Canonicalization Problem

 NPI is able to canonicalize cars of varying appearance from multiple starting positions

Generalization on 3D Canonicalization Problem

- NPI is able to canonicalize cars of varying appearance from multiple starting positions
- NPI can generalize to car appearances not encountered in the training

Generalization on 3D Canonicalization Problem

- NPI is able to canonicalize cars of varying appearance from multiple starting positions
- NPI can generalize to car appearances not encountered in the training

Figure: canonicalization of several different test set cars

Learning New Programs with a Fixed Core

- Fixing all the weights of core routing module

Learning New Programs with a Fixed Core

- Fixing all the weights of core routing module
- Only updating memory slots of the new programs

Prevent Existing Programs from Calling Subsequently Added Programs

Looking back at the training data for known programs

Prevent Existing Programs from Calling Subsequently Added Programs

- Looking back at the training data for known programs
- Allowing addition of new programs

Solving Multiple Tasks with a Single Network

Task	Single	Multi	+ Max
Addition	100.0	97.0	97.0
Sorting	100.0	100.0	100.0
Canon. seen car	89.5	91.4	91.4
Canon. unseen	88.7	89.9	89.9
Maximum	-	-	100.0

Per-sequence % accuracy

NPI learns MAX perfectly without forgetting the other tasks

Solving Multiple Tasks with a Single Network

Task	Single	Multi	+ Max
Addition	100.0	97.0	97.0
Sorting	100.0	100.0	100.0
Canon. seen car	89.5	91.4	91.4
Canon. unseen	88.7	89.9	89.9
Maximum	-	-	100.0

Per-sequence % accuracy

- NPI learns MAX perfectly without forgetting the other tasks
- One multi-task NPI can learn all three programs with comparable accuracy compared to each single-task NPI

Introduction Related Work Model Experiments Conclusion

Conclusion

Neural Programmer-Interpreters (NPI)

• learns several programs by using a single core model

- learns several programs by using a single core model
- reduces sample complexity

- learns several programs by using a single core model
- reduces sample complexity
- provides strong generalization

- learns several programs by using a single core model
- reduces sample complexity
- provides strong generalization
- works for dissimilar environments

- learns several programs by using a single core model
- reduces sample complexity
- provides strong generalization
- works for dissimilar environments
- learns new programs without forgetting already learned ones

Introduction Related Work Model Experiments Conclusion

Thank you!

