
Introduction
Related Work

Model
Experiments
Conclusion

NEURAL PROGRAMMER-INTERPRETERS 1

Presented by

Fethiye Irmak Doğan

1Reed, S., and De Freitas, N. (2015). Neural programmer-interpreters. arXiv.

1 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Central Challenges of AI

Teaching machine to learn new programs

Execute these programs automatically

2 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Central Challenges of AI

Teaching machine to learn new programs
Execute these programs automatically

2 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional
neural network that learns how to

represent a program

execute a program (as an interpreter)
generate new program embeddings (as a programmer)

3 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional
neural network that learns how to

represent a program
execute a program (as an interpreter)

generate new program embeddings (as a programmer)

3 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional
neural network that learns how to

represent a program
execute a program (as an interpreter)
generate new program embeddings (as a programmer)

3 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Compositional architecture of NPI

Task agnostic recurrent core : LSTM based sequence
model which is a single core module with the shared
parameters across all tasks

Persistant key-value program memory : Learnable
key-value memory of program embeddings which provides
learning and reusing programs
Domain-specific encoders: encoder that enables NPI to
operate in diverse environments

4 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Compositional architecture of NPI

Task agnostic recurrent core : LSTM based sequence
model which is a single core module with the shared
parameters across all tasks
Persistant key-value program memory : Learnable
key-value memory of program embeddings which provides
learning and reusing programs

Domain-specific encoders: encoder that enables NPI to
operate in diverse environments

4 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Compositional architecture of NPI

Task agnostic recurrent core : LSTM based sequence
model which is a single core module with the shared
parameters across all tasks
Persistant key-value program memory : Learnable
key-value memory of program embeddings which provides
learning and reusing programs
Domain-specific encoders: encoder that enables NPI to
operate in diverse environments

4 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Curriculum Learning2: Start small, learn easier aspects of
the task or easier subtasks, and then gradually increase the
difficulty level.

Rich Supervision: Rather than using large number of
relatively weak labels, exploit from the fewer fully supervised
execution traces

2Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings of the
26th annual international conference on machine learning, pages 41-48

5 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Neural Programmer-Interpreters
Compositional architecture of NPI
Curriculum Learning and Rich Supervision

Curriculum Learning2: Start small, learn easier aspects of
the task or easier subtasks, and then gradually increase the
difficulty level.
Rich Supervision: Rather than using large number of
relatively weak labels, exploit from the fewer fully supervised
execution traces

2Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings of the
26th annual international conference on machine learning, pages 41-48

5 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Related Work
Novelty

Related Work

Dynamically Programmable Networks
activations of one network become the weights of a second
network

Neural Turing Machine
learning and executing simple programs

Program Induction
inducing a program given example input and output pairs

6 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Related Work
Novelty

Related Work

Dynamically Programmable Networks
activations of one network become the weights of a second
network

Neural Turing Machine
learning and executing simple programs

Program Induction
inducing a program given example input and output pairs

6 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Related Work
Novelty

Related Work

Dynamically Programmable Networks
activations of one network become the weights of a second
network

Neural Turing Machine
learning and executing simple programs

Program Induction
inducing a program given example input and output pairs

6 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Related Work
Novelty

Novelties of NPI

being trained on execution traces instead of input and output
pairs

incorporating compositional structure into the network
using a program memory
learning new programs by combining sub-programs

7 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Related Work
Novelty

Novelties of NPI

being trained on execution traces instead of input and output
pairs
incorporating compositional structure into the network
using a program memory

learning new programs by combining sub-programs

7 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Related Work
Novelty

Novelties of NPI

being trained on execution traces instead of input and output
pairs
incorporating compositional structure into the network
using a program memory
learning new programs by combining sub-programs

7 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

NPI Core
NPI Core acts as a router between programs and there is a single
inference core shared by arbitrary programs

Figure: Example execution trace of single-digit addition

8 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

NPI Core

Figure: Example execution trace of single-digit addition
NPI Core is conditioned on

– current state observations:

learnable program embedding, program arguments, feature
representation of the environment

– previous hidden unit states

9 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

NPI Core

Figure: Example execution trace of single-digit addition
NPI Core is conditioned on

– current state observations:
learnable program embedding, program arguments, feature
representation of the environment

– previous hidden unit states

9 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

NPI Core

Figure: Example execution trace of single-digit addition
NPI Core is conditioned on

– current state observations:
learnable program embedding, program arguments, feature
representation of the environment

– previous hidden unit states
9 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

NPI Core

Figure: Example execution trace of single-digit addition

NPI Core outputs
– key indicating what program to call next

– probability of ending the current program
– argument for the following program (passed by reference or value)

10 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

NPI Core

Figure: Example execution trace of single-digit addition

NPI Core outputs
– key indicating what program to call next
– probability of ending the current program

– argument for the following program (passed by reference or value)

10 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

NPI Core

Figure: Example execution trace of single-digit addition

NPI Core outputs
– key indicating what program to call next
– probability of ending the current program
– argument for the following program (passed by reference or value)

10 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Program Embedding Memory

Different programs correspond to different embeddings stored in a
persistent memory

Figure: Example execution trace of single-digit addition

11 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Feed-Forward steps of program inference

et : environment observation at time t at : current program argument st : state encoding
pt : program embedding ht−1 : previous hidden unit ct−1 : previous cell unit
rt :end of program probability kt : program key embedding at :output arguments at time t
fenc : domain specific encoder flstm : LSTM mapping
fend : probability of finishing the program fprog : key embedding for next program farg : arguments to next program

st = fenc(et ,at)

ht = flstm(st ,pt ,ht−1)

rt = fend(ht), kt = fprog (ht), at+1 = farg (ht)

12 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Feed-Forward steps of program inference

et : environment observation at time t at : current program argument st : state encoding
pt : program embedding ht−1 : previous hidden unit ct−1 : previous cell unit
rt :end of program probability kt : program key embedding at :output arguments at time t
fenc : domain specific encoder flstm : LSTM mapping
fend : probability of finishing the program fprog : key embedding for next program farg : arguments to next program

st = fenc(et ,at)

ht = flstm(st ,pt ,ht−1)

rt = fend(ht), kt = fprog (ht), at+1 = farg (ht)

12 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Feed-Forward steps of program inference

et : environment observation at time t at : current program argument st : state encoding
pt : program embedding ht−1 : previous hidden unit ct−1 : previous cell unit
rt :end of program probability kt : program key embedding at :output arguments at time t
fenc : domain specific encoder flstm : LSTM mapping
fend : probability of finishing the program fprog : key embedding for next program farg : arguments to next program

st = fenc(et ,at)

ht = flstm(st ,pt ,ht−1)

rt = fend(ht), kt = fprog (ht), at+1 = farg (ht)

12 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Program Embedding

kt : program key embedding i: program ID pt+1 : next program embedding
Mkey : key embeddings which stores all the program keys Mprog : program embeddings

13 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Environmental State

et : environment observation at time t pt : program embedding at : output arguments at time t
fenv : domain specific transition mapping et+1 : next environmental state

14 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Inference Algorithm

actions are encapsulated into ACT program shared across
tasks and indicated by the NPI-generated arguments at

core module is completely agnostic to the data modality used
in the state encoding

15 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Inference Algorithm

actions are encapsulated into ACT program shared across
tasks and indicated by the NPI-generated arguments at

core module is completely agnostic to the data modality used
in the state encoding

15 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Inference Algorithm

actions are encapsulated into ACT program shared across
tasks and indicated by the NPI-generated arguments at

core module is completely agnostic to the data modality used
in the state encoding

15 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

εinp
t : {et ,it ,at} and εout

t : {it+1,at+1,rt} are the execution
traces

it and it+1 are program IDs and row indices in Mkey Mprog of
the programs to run at time t and t+1

since traces are variable length above equation can be
written as:

since hidden unit activations are capable of capturing
temporal dependencies, right hand side can be written as:

16 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

εinp
t : {et ,it ,at} and εout

t : {it+1,at+1,rt} are the execution
traces
it and it+1 are program IDs and row indices in Mkey Mprog of
the programs to run at time t and t+1

since traces are variable length above equation can be
written as:

since hidden unit activations are capable of capturing
temporal dependencies, right hand side can be written as:

16 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

εinp
t : {et ,it ,at} and εout

t : {it+1,at+1,rt} are the execution
traces
it and it+1 are program IDs and row indices in Mkey Mprog of
the programs to run at time t and t+1

since traces are variable length above equation can be
written as:

since hidden unit activations are capable of capturing
temporal dependencies, right hand side can be written as:

16 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

εinp
t : {et ,it ,at} and εout

t : {it+1,at+1,rt} are the execution
traces
it and it+1 are program IDs and row indices in Mkey Mprog of
the programs to run at time t and t+1

since traces are variable length above equation can be
written as:

since hidden unit activations are capable of capturing
temporal dependencies, right hand side can be written as:

16 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

εinp
t : {et ,it ,at} and εout

t : {it+1,at+1,rt} are the execution
traces
it and it+1 are program IDs and row indices in Mkey Mprog of
the programs to run at time t and t+1

since traces are variable length above equation can be
written as:

since hidden unit activations are capable of capturing
temporal dependencies, right hand side can be written as:

16 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

εinp
t : {et ,it ,at} and εout

t : {it+1,at+1,rt} are the execution
traces
it and it+1 are program IDs and row indices in Mkey Mprog of
the programs to run at time t and t+1

since traces are variable length above equation can be
written as:

since hidden unit activations are capable of capturing
temporal dependencies, right hand side can be written as:

16 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

εinp
t : {et ,it ,at} and εout

t : {it+1,at+1,rt} are the execution
traces
it and it+1 are program IDs and row indices in Mkey Mprog of
the programs to run at time t and t+1

since traces are variable length above equation can be
written as:

since hidden unit activations are capable of capturing
temporal dependencies, right hand side can be written as:

16 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

Adaptive curriculum : sample frequency of a program is
determined by model’s current prediction error in that
program

– forces the model to focus on learning the program worst in
execution

Memory advantage thanks to parallel execution in
sub-programs

17 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

Adaptive curriculum : sample frequency of a program is
determined by model’s current prediction error in that
program

– forces the model to focus on learning the program worst in
execution

Memory advantage thanks to parallel execution in
sub-programs

17 / 31



Introduction
Related Work

Model
Experiments
Conclusion

NPI Core
Program Embedding Memory
Inference
Training

Training

Adaptive curriculum : sample frequency of a program is
determined by model’s current prediction error in that
program

– forces the model to focus on learning the program worst in
execution

Memory advantage thanks to parallel execution in
sub-programs

17 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Addition

Task: read in the digits of two base-10 numbers and produce
the digits of the answer

Four pointers: one for each of the two input numbers, one for
the carry, and another to write the output
Model sees the current values at each pointer locations as
1-of-K encodings 3 (K=10)

Q ∈ R4xNxK is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of

columns (digits) and K is the one-hot encoding dimension

3https://en.wikipedia.org/wiki/One-hot

18 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Addition

Task: read in the digits of two base-10 numbers and produce
the digits of the answer
Four pointers: one for each of the two input numbers, one for
the carry, and another to write the output

Model sees the current values at each pointer locations as
1-of-K encodings 3 (K=10)

Q ∈ R4xNxK is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of

columns (digits) and K is the one-hot encoding dimension

3https://en.wikipedia.org/wiki/One-hot

18 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Addition

Task: read in the digits of two base-10 numbers and produce
the digits of the answer
Four pointers: one for each of the two input numbers, one for
the carry, and another to write the output
Model sees the current values at each pointer locations as
1-of-K encodings 3 (K=10)

Q ∈ R4xNxK is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of

columns (digits) and K is the one-hot encoding dimension

3https://en.wikipedia.org/wiki/One-hot

18 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Addition

Task: read in the digits of two base-10 numbers and produce
the digits of the answer
Four pointers: one for each of the two input numbers, one for
the carry, and another to write the output
Model sees the current values at each pointer locations as
1-of-K encodings 3 (K=10)

Q ∈ R4xNxK is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of

columns (digits) and K is the one-hot encoding dimension

3https://en.wikipedia.org/wiki/One-hot

18 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Addition

Figure: Illustration of the addition environment

19 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Sorting

Task: comparing each pair of adjacent items and swaps them
if they are in the wrong order (Bubble Sort 4 )

Q ∈ R1xNxK is the scratch pad, N is the array length and K is the array entry embedding dimension

4https://en.wikipedia.org/wiki/Bubble_sort

20 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Sorting

Task: comparing each pair of adjacent items and swaps them
if they are in the wrong order (Bubble Sort 4 )

Q ∈ R1xNxK is the scratch pad, N is the array length and K is the array entry embedding dimension

4https://en.wikipedia.org/wiki/Bubble_sort

20 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Sorting

Figure: Illustration of the sorting environment

21 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Canonicalizing 3D Models

Task: learn a visual program that canonicalizes the model
with respect to its pose

Nontrivial problem: different starting positions and different
car models

x ∈ RHxWx3 is the car rendering and Q ∈ R2x1xK is the scratch pad, first dimension of Q corresponds to

i1 , i2 (fixed at 1) which are the pointer locations of the azimuth and elevation and K(=24) is the one-hot

encoding dimension of pose coordinates

22 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Canonicalizing 3D Models

Task: learn a visual program that canonicalizes the model
with respect to its pose
Nontrivial problem: different starting positions and different
car models

x ∈ RHxWx3 is the car rendering and Q ∈ R2x1xK is the scratch pad, first dimension of Q corresponds to

i1 , i2 (fixed at 1) which are the pointer locations of the azimuth and elevation and K(=24) is the one-hot

encoding dimension of pose coordinates

22 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Canonicalizing 3D Models

Task: learn a visual program that canonicalizes the model
with respect to its pose
Nontrivial problem: different starting positions and different
car models

x ∈ RHxWx3 is the car rendering and Q ∈ R2x1xK is the scratch pad, first dimension of Q corresponds to

i1 , i2 (fixed at 1) which are the pointer locations of the azimuth and elevation and K(=24) is the one-hot

encoding dimension of pose coordinates

22 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Canonicalizing 3D Models

Figure: canonicalization of several different test set cars
23 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Sample Complexity on Bubble Sort Problem

Memory requirements is reduced from O(n2) to O(n) thanks
to compositional structure of the model

Number of required training samples are also reduced:

Figure: Test accuracy by the varying sample complexity

24 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Sample Complexity on Bubble Sort Problem

Memory requirements is reduced from O(n2) to O(n) thanks
to compositional structure of the model
Number of required training samples are also reduced:

Figure: Test accuracy by the varying sample complexity

24 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Generalization on Bubble Sort Problem

Training the model with variable-sized input (single-digit
numbers from length 2 to length 20)

Adding a third pointer that acts as a counter to handle
variable-sized inputs
Checking the success of the model on the inputs of previously
unseen size to check how much the problem is learned

Figure: Strong vs. weak generalization

25 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Generalization on Bubble Sort Problem

Training the model with variable-sized input (single-digit
numbers from length 2 to length 20)
Adding a third pointer that acts as a counter to handle
variable-sized inputs

Checking the success of the model on the inputs of previously
unseen size to check how much the problem is learned

Figure: Strong vs. weak generalization

25 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Generalization on Bubble Sort Problem

Training the model with variable-sized input (single-digit
numbers from length 2 to length 20)
Adding a third pointer that acts as a counter to handle
variable-sized inputs
Checking the success of the model on the inputs of previously
unseen size to check how much the problem is learned

Figure: Strong vs. weak generalization

25 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Generalization on Bubble Sort Problem

Training the model with variable-sized input (single-digit
numbers from length 2 to length 20)
Adding a third pointer that acts as a counter to handle
variable-sized inputs
Checking the success of the model on the inputs of previously
unseen size to check how much the problem is learned

Figure: Strong vs. weak generalization

25 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Generalization on 3D Canonicalization Problem

NPI is able to canonicalize cars of varying appearance from
multiple starting positions

NPI can generalize to car appearances not encountered in
the training

Figure: canonicalization of several different test set cars

26 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Generalization on 3D Canonicalization Problem

NPI is able to canonicalize cars of varying appearance from
multiple starting positions
NPI can generalize to car appearances not encountered in
the training

Figure: canonicalization of several different test set cars

26 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Generalization on 3D Canonicalization Problem

NPI is able to canonicalize cars of varying appearance from
multiple starting positions
NPI can generalize to car appearances not encountered in
the training

Figure: canonicalization of several different test set cars

26 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Learning New Programs with a Fixed Core

– Fixing all the weights of core routing module

– Only updating memory slots of the new programs

27 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Learning New Programs with a Fixed Core

– Fixing all the weights of core routing module
– Only updating memory slots of the new programs

27 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Prevent Existing Programs from Calling Subsequently
Added Programs

– Looking back at the training data for known programs

– Allowing addition of new programs

28 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Prevent Existing Programs from Calling Subsequently
Added Programs

– Looking back at the training data for known programs
– Allowing addition of new programs

28 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Solving Multiple Tasks with a Single Network

Per-sequence % accuracy
– NPI learns MAX perfectly without forgetting the other tasks

– One multi-task NPI can learn all three programs with comparable
accuracy compared to each single-task NPI

29 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Solving Multiple Tasks with a Single Network

Per-sequence % accuracy
– NPI learns MAX perfectly without forgetting the other tasks
– One multi-task NPI can learn all three programs with comparable

accuracy compared to each single-task NPI

29 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Conclusion

Neural Programmer-Interpreters (NPI)
learns several programs by using a single core model

reduces sample complexity
provides strong generalization
works for dissimilar environments
learns new programs without forgetting already learned ones

30 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Conclusion

Neural Programmer-Interpreters (NPI)
learns several programs by using a single core model
reduces sample complexity

provides strong generalization
works for dissimilar environments
learns new programs without forgetting already learned ones

30 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Conclusion

Neural Programmer-Interpreters (NPI)
learns several programs by using a single core model
reduces sample complexity
provides strong generalization

works for dissimilar environments
learns new programs without forgetting already learned ones

30 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Conclusion

Neural Programmer-Interpreters (NPI)
learns several programs by using a single core model
reduces sample complexity
provides strong generalization
works for dissimilar environments

learns new programs without forgetting already learned ones

30 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Conclusion

Neural Programmer-Interpreters (NPI)
learns several programs by using a single core model
reduces sample complexity
provides strong generalization
works for dissimilar environments
learns new programs without forgetting already learned ones

30 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Thank you!

31 / 31


	Introduction
	Neural Programmer-Interpreters
	Compositional architecture of NPI
	Curriculum Learning and Rich Supervision

	Related Work
	Related Work
	Novelty

	Model
	NPI Core
	Program Embedding Memory
	Inference
	Training

	Experiments
	Task and Environment Descriptions
	Sample Complexity and Generalization
	Learning New Programs with a Fixed Core
	Solving Multiple Tasks with a Single Network

	Conclusion

