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Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional
neural network that learns how to

@ represent a program
@ execute a program (as an interpreter)

@ generate new program embeddings (as a programmer)
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Compositional architecture of NPI

Task agnostic recurrent core : LSTM based sequence
model which is a single core module with the shared
parameters across all tasks

Persistant key-value program memory : Learnable
key-value memory of program embeddings which provides
learning and reusing programs

Domain-specific encoders: encoder that enables NPI to
operate in diverse environments
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Compositional architecture of NPI

Curriculum Learning and Rich Supervision

Curriculum Learning?: Start small, learn easier aspects of
the task or easier subtasks, and then gradually increase the
difficulty level.

Rich Supervision: Rather than using large number of
relatively weak labels, exploit from the fewer fully supervised
execution traces

2Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings of the
26th annual international conference on machine learning, pages 41-48
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Novelty

Related Work

Dynamically Programmable Networks

e activations of one network become the weights of a second
network

Neural Turing Machine
e learning and executing simple programs
Program Induction
e inducing a program given example input and output pairs
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Novelty

Novelties of NPI

@ being trained on execution traces instead of input and output
pairs

@ incorporating compositional structure into the network
using a program memory

@ learning new programs by combining sub-programs
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NPI Core

NPI Core acts as a router between programs and there is a single
inference core shared by arbitrary programs
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Figure: Example execution trace of single-digit addition
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Figure: Example execution trace of single-digit addition
NPI Core is conditioned on

— current state observations:
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e learnable program embedding, program arguments, feature
representation of the environment
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Figure: Example execution trace of single-digit addition
NPI Core is conditioned on
— current state observations:

e learnable program embedding, program arguments, feature
representation of the environment

— previous hidden unit states
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NPI Core outputs

— key indicating what program to call next
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Figure: Example execution trace of single-digit addition
NPI Core outputs

— key indicating what program to call next

— probability of ending the current program
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Figure: Example execution trace of single-digit addition
NPI Core outputs
— key indicating what program to call next
— probability of ending the current program

— argument for the following program (passed by reference or value)
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Program Embedding Memory

Different programs correspond to different embeddings stored in a
persistent memory
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Figure: Example execution trace of single-digit addition
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Feed-Forward steps of program inference

et : environment observation at time t at : current program argument st : state encoding

pt : program embedding hy_1 : previous hidden unit cy_j : previous cell unit

re :end of program probability k¢ : program key embedding a; :output arguments at time t

fenc : domain specific encoder  figyy, : LSTM mapping

fend : probability of finishing the program fprog : key embedding for next program farg : arguments to next program

St = fenc(etxat)
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Program Embedding
Inference

Training

Feed-Forward steps of program inference

et : environment observation at time t at : current program argument st : state encoding

pt : program embedding hy_1 : previous hidden unit cy_j : previous cell unit

re :end of program probability k¢ : program key embedding a; :output arguments at time t

fenc : domain specific encoder  figyy, : LSTM mapping

fend : probability of finishing the program fprog : key embedding for next program farg : arguments to next program

St = fenc(etxat)

hy = flstm(StyPtvht—l)
re = fend(ht)v ke = fprog(ht)v at+1 = farg(ht)
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Program Embedding

ke : program key embedding i: program ID  p.1 : next program embedding
mkey . key embeddings which stores all the program keys MP"™8 : program embeddings

i* = arg max(M ") ky , ppy1 = MR
i=1..N
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Environmental State

et : environment observation at time t pg : program embedding a; : output arguments at time t
fenv : domain specific transition mapping eg,1 : next environmental state

€t+l ~ fen'x,'(et:ptt a’t)
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Inference Algorithm

Algorithm 1 Neural programming inference

1: Inputs: Environment observation e, program id ¢, arguments a, stop threshold «
2: function RUN(Z, a)

3: h 0,7 0,p+ M9 > Init LSTM and return probability.

4 while » < o do

5: 85 fencle,a), b« fism(s,p, h) > Feed-forward NPI one step.

6 P Fod(B), K < Forog(R), 13 & furg(B)

7 ig 4 arg max(]\fjjk_:ey)Tk 1> Decide the next program to run.
J=1.N

8: ifi == ACT then e + fep.(e,p,a) > Update the environment based on ACT.

9: else RUN(?2, as) > Run subprogram i, with arguments ay
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Inference Algorithm

Algorithm 1 Neural programming inference

1: Inputs: Environment observation e, program id ¢, arguments a, stop threshold «
2: function RUN(Z, a)

3: h 0,7 0,p+ M9 > Init LSTM and return probability.
4 while » < o do

5: 85 fencle,a), b« fism(s,p, h) > Feed-forward NPI one step.
6 P Fod(B), K < Forog(R), 13 & furg(B)

7 ig 4 arg max(]\fjjk_:ey)Tk 1> Decide the next program to run.

J=1.N

8: ifi == ACT then e + fep.(e,p,a) > Update the environment based on ACT.
9: else RUN(?2, as) > Run subprogram i, with arguments ay

@ actions are encapsulated into ACT program shared across
tasks and indicated by the NPIl-generated arguments a;

@ core module is completely agnostic to the data modality used
in the state encoding
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el {epir,ar} and €9t 1 {ir,1,a¢41,r¢} are the execution
traces
ir and j;,1 are program IDs and row indices in M*®Y MProg of
the programs to run at time t and t+1

0" = arg max log P(£out|¢imP 0

er (EWZEW) g (7|6 6)
since traces are variable length above equation can be
written as:
T
log P(&out |Einp; ) = Zlogp(f;’“t‘d"p: - &00)

t=1
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T N
log 1U(£out‘£inp:. 9) _ Zlogp(ffut‘&i"p: f;m)3 5)
t=1
since hidden unit activations are capable of capturing
temporal dependencies, right hand side can be written as:

log P(7! 61", ., &) = log Plir11|he) + log Plass1|he) +log P(re|he)
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In ce
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Training

e Adaptive curriculum : sample frequency of a program is
determined by model's current prediction error in that
program

— forces the model to focus on learning the program worst in
execution

@ Memory advantage thanks to parallel execution in
sub-programs

17 /31
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Task and Environment Descriptions

Experiments

Addition

@ Task: read in the digits of two base-10 numbers and produce
the digits of the answer

@ Four pointers: one for each of the two input numbers, one for
the carry, and another to write the output

@ Model sees the current values at each pointer locations as
1-of-K encodings 3 (K=10)

feytc(Q1 7?11 ’52, 7?;-;1 i4, O,t_) = A'[L})([Q(l 7?1)1 Q(2 72) Q(3 i;g), Q(4 54), (It(l), at_(2), g (3)])

Qe R¥NXK g the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of

columns (digits) and K is the one-hot encoding dimension

3https:/ /en.wikipedia.org/wiki/One-hot
18/31



Task and Environment Descriptions
Sample Comp and Generalization
ning Ne i

Experiments e
P Solvin

Addition

Program Descriptions Calls
ADD Perform multi-digit addition ADDI, LSHIFT
ADDI1 Perform single-digit addition ACT, CARRY
CARRY Mark a 1 in the carry row one unit left ACT
LSHIFT Shift a specified pointer one step left ACT
RSHIFT Shift a specified pointer one step right ACT
ACT Move a pointer or write to the scratch pad -
ADD
X Loapp1 T aoD1 L. AbD1
input1/0 0 0 9 6 WRITE OUT 1 WRITE OUT 2 WRITE OUT 2
CARRY CARRY LSHIFT
’ PTR CARRY LEFT  PTRCARRY LEFT  PTR INP1LEFT
input2|0 0 1 2 5 WRITE CARRY 1 WRITE CARRY 1 PTR INP2LEFT
Y] PTR CARRY RIGHT ~PTR GARRY RIGHT PTR GARRY LEFT
aryl0 0 1 1 1 LSHIFT LSHIFT PTR OUT LEFT
PTR INP1 LEFT PTR INP1 LEFT
\ PTR INP2 LEFT PTR INP2 LEFT
ouput|0 0 0 2 1 PTR CARRY LEFT PTR GARRY LEFT

PTROUT LEFT PTR OUT LEFT
(b) Actual trace of addition program generated by our model
on the problem shown to the left. Note that we substituted
the ACT calls in the trace with more human-readable steps.

(a) Example scratch pad and pointers
used for computing “96 + 125 =221".
Carry step is being implemented.

Figure: lllustration of the addition environment
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“https:/ /en.wikipedia.org/wiki/Bubble_sort

20/31



Task and Environment Descrlptlons

Experiments

Sorting

@ Task: comparing each pair of adjacent items and swaps them
if they are in the wrong order (Bubble Sort # )

fEW:(Q: i1,12, U‘f) = AILP([Q(I il): Q(l 72) af(l): at(z): Uf(g)])

Q € RPYNXK s the scratch pad, N is the array length and K is the array entry embedding dimension

“https:/ /en.wikipedia.org/wiki/Bubble_sort
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Sorting

Experiments

BUBBLESORT | Perform bubble sort (ascending order) BUBBLE, RESET
BUBBLE Perform one sweep of pointers left to right ACT, BSTEP
RESET Move both pointers all the way left LSHIFT
BSTEP Conditionally swap and advance pointers COMPSWAP, RSHIFT
COMPSWAP Conditionally swap two elements ACT
LSHIFT Shift a specified pointer one step left ACT
RSHIFT Shift a specified pointer one step right ACT
ACT Swap two values at pointer locations or move a pointer | -
BUBBLESORT
array _ LBUBBLE L~ RESET .. ~BUBBLE ..
t=013 2 4 9 1 PTR2RIGHT  LSHIFT PTR 2 RIGHT
BSTEP PTR 1 LEFT BSTEP
COMPSWAP ~ PTR2LEFT COMPSWAP
=113 2 4 9 1 SWAP12  LSHIFT SWAP 1 2
RSHIFT PTR 1 LEFT RSHIFT
PTR1RIGHT ~PTR2LEFT PTR 1 RIGHT
t=2 PTR2RIGHT ... PTR 2 RIGHT
23 L 8 LSHIFT
BSTEP PTR1LEFT  BSTEP
=312 3 4 9 1 COMPSWAP  PTR2LEFT COMPSWAP
. RSHIFT RSHIFT
(a) Example scratch pad and pointers PTR 1RIGHT PTR 1 RIGHT
used for sorting. Several steps of the PTR 2RIGHT PTR 2 RIGHT

BUBBLE subprogram are shown.

(b) Excerpt from the trace of the learned bubblesort program.

Figure: lllustration of the sorting environment
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with respect to its pose



Task and Environment Descrlptlons

Experiments

Canonicalizing 3D Models

@ Task: learn a visual program that canonicalizes the model
with respect to its pose

@ Nontrivial problem: different starting positions and different
car models



Task and Environment Descrlptlons

Experiments

Canonicalizing 3D Models

@ Task: learn a visual program that canonicalizes the model
with respect to its pose

@ Nontrivial problem: different starting positions and different
car models
Jene(Q iy in, a0) = MLP([Q(L,41), Q(2,i2), fonn (), ar(1), ar(2), a(3)])

x € RS g the car rendering and Q € RXIXK s the scratch pad, first dimension of Q corresponds to
i1 , ip (fixed at 1) which are the pointer locations of the azimuth and elevation and K(=24) is the one-hot

encoding dimension of pose coordinates



Experiments

Canonicalizing 3D Models

GOTO Change 3D car pose to match the target HGOTO, VGOTO
HGOTO Move horizontally to the target angle LGOTO, RGOTO
LGOTO Move left to match the target angle ACT

RGOTO Move right to match the target angle ACT

VGOTO Move vertically to the target elevation UGOTO, DGOTO
UGOTO Move up to match the target elevation ACT

DGOTO Move down to match the target elevation ACT

ACT Move camera 15° up, down, left or right -

GOTO 1 2 o 1 2

HGOTO

1 2 3
oo o 1 2 3 LeoTo e i e
ACT(LEFT,
CErGHET) n n . ACTELEFT;

4 5 6
e Ao o S
ACT(UP) ACT(LEFT)
ACT(LEFT)
GOTO 1 2 VGOTO
HGOTO uGoTO g
RGOTO ACT(UP)
ACT (RIGHT)
ACT (RIGHT) Gozgo-lroz
ACT(RIGHT) |, T 1 2 3
VGOTO —
BEoD ACT(LEFT) ‘&?ﬂ ;g;
ACT (DOWN) VGOTO o
DGOTO
£CTH(DOWN) ACT (DOWN)

Figure: canonicalization of several different test set cars
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Sample Complexity on Bubble Sort Problem

e Memory requirements is reduced from O(n?) to O(n) thanks
to compositional structure of the model
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Le New P ms with a Fixed

Experiments S Itif h a Single N

Sample Complexity on Bubble Sort Problem

e Memory requirements is reduced from O(n?) to O(n) thanks
to compositional structure of the model
@ Number of required training samples are also reduced:
., Songpersequance sceuscy v, #sing sxampls

7%

50

T W % M 8T 6 12 286 512 1026 204
#Training examples
—A— Seq2Seq  —e— NPI

Figure: Test accuracy by the varying sample complexity
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Generalization on Bubble Sort Problem

@ Training the model with variable-sized input (single-digit
numbers from length 2 to length 20)
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Task and Environment Descriptions
Complexity and Generalization
Pri ns with a Fix

Experiments vith a Single

Generalization on Bubble Sort Problem

@ Training the model with variable-sized input (single-digit
numbers from length 2 to length 20)

@ Adding a third pointer that acts as a counter to handle
variable-sized inputs

@ Checking the success of the model on the inputs of previously
unseen size to check how much the problem is learned

Sorting per-sequence accuracy vs sequence length
100 “A 4

Training

50 sequence
lengths

—— e ———

e ler

length
—A- Seq2Seq  —e= NPI

Figure: Strong vs. weak generalization
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@ NPI is able to canonicalize cars of varying appearance from
multiple starting positions
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Task and Eny vironment Dnsu\plwns

Experiments

Generalization on 3D Canonicalization Problem

@ NPI is able to canonicalize cars of varying appearance from
multiple starting positions

@ NPI can generalize to car appearances not encountered in
the training

GOTO 1 2 60;80%02
HGOTO

1 2 3
R d 2 3 Leoro o i i
ACT(LEFT)
R R ST DA

VGOTO
ACT(LEFT)
Uﬁgzg(um ACT(LEFT) = e =
ACT(LEFT) | -
GOTO 1 2 VGOTO
HGOTO ucoTo g
RGOTO ACT(UP)
ACT (RIGHT) c0T0 1 2
ACT (RIGHT) fooro
ACT (RIGHT) 1 2 3
V6OTO LGUTU( 5 P -
ACT(LEFT: | ity ey
DGOTO VGOTO f= f‘ =3 =
ACT (DOWN) o oTo
ECTI(DOWN) ACT (DOWN)

Figure: canonicalization of several different test set cars




Experiments

Learning New Programs with a Fixed Core

— Fixing all the weights of core routing module
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Experiments Solv Aultiple Tasks with a Single Network

Learning New Programs with a Fixed Core

— Fixing all the weights of core routing module

— Only updating memory slots of the new programs
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Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core

Experiments Solving Multiple Tasks with a Single Network

Prevent Existing Programs from Calling Subsequently
Added Programs

— Looking back at the training data for known programs

— Allowing addition of new programs
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nd Environment Descriptions

Experiments Solvmg Multlple Tasks with a Slng|e Network

Solving Multiple Tasks with a Single Network

Task | Single | Multi | + Max
Addition 100.0 97.0 97.0
Sorting 100.0 | 100.0 | 100.0

Canon. seen car 89.5 91.4 91.4
Canon. unseen 88.7 89.9 89.9
Maximum - - 100.0

Per-sequence % accuracy

— NPI learns MAX perfectly without forgetting the other tasks
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Solving Multiple Tasks with a Single Network

Task | Single | Multi | + Max
Addition 100.0 97.0 97.0
Sorting 100.0 | 100.0 | 100.0

Canon. seen car 89.5 91.4 91.4
Canon. unseen 88.7 89.9 89.9
Maximum - - 100.0

Per-sequence % accuracy
— NPI learns MAX perfectly without forgetting the other tasks

— One multi-task NPI can learn all three programs with comparable
accuracy compared to each single-task NPI
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Conclusion

Conclusion

Neural Programmer-Interpreters (NPI)
@ learns several programs by using a single core model
@ reduces sample complexity
@ provides strong generalization
@ works for dissimilar environments

@ learns new programs without forgetting already learned ones



Conclusion

Thank you!
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