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Different programs correspond to different embeddings stored in a
persistent memory

Figure: Example execution trace of single-digit addition
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fenc : domain specific encoder flstm : LSTM mapping
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st = fenc(et ,at)

ht = flstm(st ,pt ,ht−1)

rt = fend(ht), kt = fprog (ht), at+1 = farg (ht)
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t : {et ,it ,at} and εout

t : {it+1,at+1,rt} are the execution
traces

it and it+1 are program IDs and row indices in Mkey Mprog of
the programs to run at time t and t+1

since traces are variable length above equation can be
written as:

since hidden unit activations are capable of capturing
temporal dependencies, right hand side can be written as:
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Task: read in the digits of two base-10 numbers and produce
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the carry, and another to write the output
Model sees the current values at each pointer locations as
1-of-K encodings 3 (K=10)

Q ∈ R4xNxK is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of

columns (digits) and K is the one-hot encoding dimension

3https://en.wikipedia.org/wiki/One-hot

18 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Addition

Task: read in the digits of two base-10 numbers and produce
the digits of the answer
Four pointers: one for each of the two input numbers, one for
the carry, and another to write the output

Model sees the current values at each pointer locations as
1-of-K encodings 3 (K=10)

Q ∈ R4xNxK is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of

columns (digits) and K is the one-hot encoding dimension

3https://en.wikipedia.org/wiki/One-hot

18 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Addition

Task: read in the digits of two base-10 numbers and produce
the digits of the answer
Four pointers: one for each of the two input numbers, one for
the carry, and another to write the output
Model sees the current values at each pointer locations as
1-of-K encodings 3 (K=10)

Q ∈ R4xNxK is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of

columns (digits) and K is the one-hot encoding dimension

3https://en.wikipedia.org/wiki/One-hot

18 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Addition

Task: read in the digits of two base-10 numbers and produce
the digits of the answer
Four pointers: one for each of the two input numbers, one for
the carry, and another to write the output
Model sees the current values at each pointer locations as
1-of-K encodings 3 (K=10)

Q ∈ R4xNxK is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of

columns (digits) and K is the one-hot encoding dimension

3https://en.wikipedia.org/wiki/One-hot

18 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Addition

Figure: Illustration of the addition environment
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Task: comparing each pair of adjacent items and swaps them
if they are in the wrong order (Bubble Sort 4 )

Q ∈ R1xNxK is the scratch pad, N is the array length and K is the array entry embedding dimension

4https://en.wikipedia.org/wiki/Bubble_sort

20 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Sorting

Task: comparing each pair of adjacent items and swaps them
if they are in the wrong order (Bubble Sort 4 )

Q ∈ R1xNxK is the scratch pad, N is the array length and K is the array entry embedding dimension

4https://en.wikipedia.org/wiki/Bubble_sort

20 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Sorting

Figure: Illustration of the sorting environment

21 / 31



Introduction
Related Work

Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

Canonicalizing 3D Models

Task: learn a visual program that canonicalizes the model
with respect to its pose

Nontrivial problem: different starting positions and different
car models

x ∈ RHxWx3 is the car rendering and Q ∈ R2x1xK is the scratch pad, first dimension of Q corresponds to

i1 , i2 (fixed at 1) which are the pointer locations of the azimuth and elevation and K(=24) is the one-hot

encoding dimension of pose coordinates
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Figure: canonicalization of several different test set cars
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Sample Complexity on Bubble Sort Problem

Memory requirements is reduced from O(n2) to O(n) thanks
to compositional structure of the model

Number of required training samples are also reduced:

Figure: Test accuracy by the varying sample complexity
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Generalization on Bubble Sort Problem

Training the model with variable-sized input (single-digit
numbers from length 2 to length 20)

Adding a third pointer that acts as a counter to handle
variable-sized inputs
Checking the success of the model on the inputs of previously
unseen size to check how much the problem is learned

Figure: Strong vs. weak generalization
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Generalization on 3D Canonicalization Problem

NPI is able to canonicalize cars of varying appearance from
multiple starting positions

NPI can generalize to car appearances not encountered in
the training

Figure: canonicalization of several different test set cars
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Solving Multiple Tasks with a Single Network

Per-sequence % accuracy
– NPI learns MAX perfectly without forgetting the other tasks

– One multi-task NPI can learn all three programs with comparable
accuracy compared to each single-task NPI
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reduces sample complexity
provides strong generalization
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