# NEURAL PROGRAMMER-INTERPRETERS ${ }^{1}$ 

Presented by

Fethiye Irmak Doğan

[^0]Introduction

## Central Challenges of AI

- Teaching machine to learn new programs


## Central Challenges of AI

- Teaching machine to learn new programs
- Execute these programs automatically


## Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional neural network that learns how to

- represent a program


## Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional neural network that learns how to

- represent a program
- execute a program (as an interpreter)


## Neural Programmer-Interpreters (NPI)

Neural Programmer-Interpreters is a recurrent and compositional neural network that learns how to

- represent a program
- execute a program (as an interpreter)
- generate new program embeddings (as a programmer)


## Compositional architecture of NPI

Task agnostic recurrent core : LSTM based sequence model which is a single core module with the shared parameters across all tasks

## Compositional architecture of NPI

Task agnostic recurrent core : LSTM based sequence model which is a single core module with the shared parameters across all tasks

Persistant key-value program memory : Learnable key-value memory of program embeddings which provides learning and reusing programs

## Compositional architecture of NPI

Task agnostic recurrent core : LSTM based sequence model which is a single core module with the shared parameters across all tasks

Persistant key-value program memory : Learnable key-value memory of program embeddings which provides learning and reusing programs
Domain-specific encoders: encoder that enables NPI to operate in diverse environments

# Curriculum Learning²: Start small, learn easier aspects of the task or easier subtasks, and then gradually increase the difficulty level. 

[^1]Curriculum Learning ${ }^{2}$ : Start small, learn easier aspects of the task or easier subtasks, and then gradually increase the difficulty level.
Rich Supervision: Rather than using large number of relatively weak labels, exploit from the fewer fully supervised execution traces

[^2]
## Related Work

Dynamically Programmable Networks

- activations of one network become the weights of a second network


## Related Work

Dynamically Programmable Networks

- activations of one network become the weights of a second network
Neural Turing Machine
- learning and executing simple programs


## Related Work

Dynamically Programmable Networks

- activations of one network become the weights of a second network
Neural Turing Machine
- learning and executing simple programs

Program Induction

- inducing a program given example input and output pairs


## Novelties of NPI

- being trained on execution traces instead of input and output pairs


## Novelties of NPI

- being trained on execution traces instead of input and output pairs
- incorporating compositional structure into the network using a program memory


## Novelties of NPI

- being trained on execution traces instead of input and output pairs
- incorporating compositional structure into the network using a program memory
- learning new programs by combining sub-programs


## NPI Core

NPI Core acts as a router between programs and there is a single inference core shared by arbitrary programs


Figure: Example execution trace of single-digit addition

## NPI Core



Figure: Example execution trace of single-digit addition
NPI Core is conditioned on

- current state observations:


## NPI Core



Figure: Example execution trace of single-digit addition
NPI Core is conditioned on

- current state observations:
- learnable program embedding, program arguments, feature representation of the environment


## NPI Core



Figure: Example execution trace of single-digit addition
NPI Core is conditioned on

- current state observations:
- learnable program embedding, program arguments, feature representation of the environment
- previous hidden unit states


## NPI Core



Figure: Example execution trace of single-digit addition
NPI Core outputs

- key indicating what program to call next


## NPI Core



Figure: Example execution trace of single-digit addition
NPI Core outputs

- key indicating what program to call next
- probability of ending the current program


## NPI Core



Figure: Example execution trace of single-digit addition
NPI Core outputs

- key indicating what program to call next
- probability of ending the current program
- argument for the following program (passed by reference or value)


## Program Embedding Memory

Different programs correspond to different embeddings stored in a persistent memory


Figure: Example execution trace of single-digit addition

Introduction

## Feed-Forward steps of program inference

$\mathbf{e}_{\mathbf{t}}$ : environment observation at time $\mathrm{t} \quad \mathbf{a}_{\mathbf{t}}$ : current program argument $\mathbf{s}_{\mathbf{t}}$ : state encoding
$\mathbf{p}_{\mathbf{t}}$ : program embedding $\mathbf{h}_{\mathbf{t}-\mathbf{1}}$ : previous hidden unit $\mathbf{c}_{\mathbf{t}-\mathbf{1}}$ : previous cell unit
$\mathbf{r}_{\mathbf{t}}$ :end of program probability $\mathbf{k}_{\mathbf{t}}$ : program key embedding $\mathbf{a}_{\mathbf{t}}$ :output arguments at time t
$\mathbf{f}_{\text {enc }}$ : domain specific encoder $\mathbf{f}_{\text {Istm }}$ : LSTM mapping
$\mathbf{f}_{\text {end }}$ : probability of finishing the program $f_{\text {prog }}$ : key embedding for next program $f_{\text {arg }}$ : arguments to next program

$$
s_{t}=f_{e n c}\left(e_{t}, a_{t}\right)
$$

Introduction

## Feed-Forward steps of program inference

$\mathbf{e}_{\mathbf{t}}$ : environment observation at time $\mathrm{t} \mathbf{a}_{\mathbf{t}}$ : current program argument $\mathbf{s}_{\mathbf{t}}$ : state encoding
$\mathbf{p}_{\mathbf{t}}$ : program embedding $\mathbf{h}_{\mathbf{t}-\mathbf{1}}$ : previous hidden unit $\mathbf{c}_{\mathbf{t}-\mathbf{1}}$ : previous cell unit
$\mathbf{r}_{\mathbf{t}}$ :end of program probability $\mathbf{k}_{\mathbf{t}}$ : program key embedding $\mathbf{a}_{\mathbf{t}}$ :output arguments at time t
$\mathbf{f}_{\text {enc }}$ : domain specific encoder $\mathbf{f}_{\text {Istm }}$ : LSTM mapping
$\mathbf{f}_{\text {end }}$ : probability of finishing the program $f_{\text {prog }}$ : key embedding for next program $f_{\text {arg }}$ : arguments to next program

$$
\begin{aligned}
s_{t} & =f_{e n c}\left(e_{t}, a_{t}\right) \\
h_{t} & =f_{\text {lstm }}\left(s_{t}, p_{t}, h_{t-1}\right)
\end{aligned}
$$

## Feed-Forward steps of program inference

$\mathbf{e}_{\mathbf{t}}$ : environment observation at time $\mathrm{t} \quad \mathbf{a}_{\mathbf{t}}$ : current program argument $\mathbf{s}_{\mathbf{t}}$ : state encoding
$\mathbf{p}_{\mathbf{t}}$ : program embedding $\mathbf{h}_{\mathbf{t}-\mathbf{1}}$ : previous hidden unit $\mathbf{c}_{\mathbf{t}-\mathbf{1}}$ : previous cell unit
$\mathbf{r}_{\mathbf{t}}$ :end of program probability $\mathbf{k}_{\mathbf{t}}$ : program key embedding $\mathbf{a}_{\mathbf{t}}$ :output arguments at time t
$\mathbf{f}_{\text {enc }}$ : domain specific encoder $\mathbf{f}_{\text {Istm }}$ : LSTM mapping
$\mathbf{f}_{\text {end }}$ : probability of finishing the program $f_{\text {prog }}$ : key embedding for next program $f_{\text {arg }}$ : arguments to next program

$$
\begin{aligned}
& s_{t}=f_{\text {enc }}\left(e_{t}, a_{t}\right) \\
& h_{t}=f_{\text {lstm }}\left(s_{t}, p_{t}, h_{t-1}\right) \\
& r_{t}=f_{\text {end }}\left(h_{t}\right), k_{t}=f_{p r o g}\left(h_{t}\right), a_{t+1}=f_{a r g}\left(h_{t}\right)
\end{aligned}
$$

## Program Embedding

$\mathbf{k}_{\mathbf{t}}$ : program key embedding $\mathbf{i}$ : program ID $\mathbf{p}_{\mathbf{t}+\mathbf{1}}$ : next program embedding $\mathbf{M}^{\text {key }}$ : key embeddings which stores all the program keys $\mathbf{M}^{\text {prog }}$ : program embeddings

$$
i^{*}=\underset{i=1 . . N}{\arg \max }\left(M_{i,:}^{\mathrm{key}}\right)^{T} k_{t}, \quad p_{t+1}=M_{i^{*},:}^{\text {prog }}
$$

## NPI Core

 Program Embedding Memory Inference Training
## Environmental State

$\mathbf{e}_{\mathbf{t}}$ : environment observation at time $\mathrm{t} \quad \mathbf{p}_{\mathbf{t}}$ : program embedding $\mathbf{a}_{\mathbf{t}}$ : output arguments at time t $\mathbf{f}_{\text {env }}$ : domain specific transition mapping $\mathbf{e}_{\mathbf{t}+\mathbf{1}}$ : next environmental state

$$
e_{t+1} \sim f_{e n v}\left(e_{t}, p_{t}, a_{t}\right)
$$

## Inference Algorithm

```
Algorithm 1 Neural programming inference
    Inputs: Environment observation \(e\), program id \(i\), arguments \(a\), stop threshold \(\alpha\)
    function \(\operatorname{RUN}(i, a)\)
        \(h \leftarrow \mathbf{0}, r \leftarrow 0, p \leftarrow M_{i,:}^{\text {prog }}\)
        while \(r<\alpha\) do
            \(s \leftarrow f_{\text {enc }}(e, a), h \leftarrow f_{\text {lstm }}(s, p, h)\)
            \(r \leftarrow f_{\text {end }}(h), k \leftarrow f_{\text {prog }}(h), a_{2} \leftarrow f_{\text {arg }}(h)\)
            \(i_{2} \leftarrow \underset{j=1 . . N}{\arg \max }\left(M_{j,:}^{\text {key }}\right)^{T} k\)
            if \(i==\) ACT then \(e \leftarrow f_{\text {env }}(e, p, a)\)
            else \(\operatorname{RUN}\left(i_{2}, a_{2}\right)\)
                                    \(\triangleright\) Init LSTM and return probability.
                            \(\triangleright\) Feed-forward NPI one step.
```

$\triangleright$ Update the environment based on ACT. $\triangleright$ Run subprogram $i_{2}$ with arguments $a_{2}$

## Inference Algorithm

```
Algorithm 1 Neural programming inference
    Inputs: Environment observation \(e\), program id \(i\), arguments \(a\), stop threshold \(\alpha\)
    function \(\operatorname{RUN}(i, a)\)
        \(h \leftarrow \mathbf{0}, r \leftarrow 0, p \leftarrow M_{i,:}^{\text {prog }}\)
            while \(r<\alpha\) do
            \(s \leftarrow f_{\text {enc }}(e, a), h \leftarrow f_{\text {lstm }}(s, p, h)\)
            \(r \leftarrow f_{\text {end }}(h), k \leftarrow f_{\text {prog }}(h), a_{2} \leftarrow f_{\text {arg }}(h)\)
            \(i_{2} \leftarrow \underset{j=1 . . N}{\arg \max }\left(M_{j,:}^{\mathrm{key}}\right)^{T} k\)
            if \(i==\) ACT then \(e \leftarrow f_{\text {env }}(e, p, a)\)
            else \(\operatorname{RUN}\left(i_{2}, a_{2}\right)\)
                                    \(\triangleright\) Init LSTM and return probability.
                            \(\triangleright\) Feed-forward NPI one step.
- actions are encapsulated into ACT program shared across tasks and indicated by the NPI-generated arguments \(a_{t}\)

\section*{Inference Algorithm}
Inputs: Environment observation \(e\), program id \(i\), arguments \(a\), stop threshold \(\alpha\)
function \(\operatorname{RUN}(i, a)\)
    \(h \leftarrow \mathbf{0}, r \leftarrow 0, p \leftarrow M_{i,:}^{\text {prog }}\)
        while \(r<\alpha\) do
            \(s \leftarrow f_{\text {enc }}(e, a), h \leftarrow f_{l s t m}(s, p, h)\)
6: \(\quad r \leftarrow f_{\text {end }}(h), k \leftarrow f_{\text {prog }}(h), a_{2} \leftarrow f_{\text {arg }}(h)\)
7: \(\quad i_{2} \leftarrow \underset{j=1 . . N}{\arg \max }\left(M_{j,:}^{\text {key }}\right)^{T} k\)
8: \(\quad\) if \(i==\) ACT then \(e \leftarrow f_{\text {env }}(e, p, a)\)
            else \(\operatorname{RUN}\left(i_{2}, a_{2}\right)\)
                                    \(\triangleright\) Init LSTM and return probability.
                                    \(\triangleright\) Feed-forward NPI one step.
5:
9:
```

```
```

Algorithm 1 Neural programming inference

```
```

```
Algorithm 1 Neural programming inference
```

```
        lse \(\operatorname{RUN}\left(i_{2}, a_{2}\right)\)
    \(\triangleright\) Update the environment based on ACT.
    \(\triangleright\) Run subprogram \(i_{2}\) with arguments \(a_{2}\)
```

- actions are encapsulated into ACT program shared across tasks and indicated by the NPI-generated arguments $a_{t}$
- core module is completely agnostic to the data modality used in the state encoding


## Training

$\varepsilon_{t}^{\text {inp }}:\left\{e_{t}, i_{t}, a_{t}\right\}$ and $\varepsilon_{t}^{\text {out }}:\left\{i_{t+1}, a_{t+1}, r_{t}\right\}$ are the execution traces

```
NPI Core
Program Embedding Memory
Inference
Training
```


## Training

$\varepsilon_{t}^{\text {inp }}:\left\{e_{t}, i_{t}, a_{t}\right\}$ and $\varepsilon_{t}^{\text {out }}:\left\{i_{t+1}, a_{t+1}, r_{t}\right\}$ are the execution traces
$i_{t}$ and $i_{t+1}$ are program IDs and row indices in $M^{k e y} M^{p r o g}$ of the programs to run at time $t$ and $t+1$

```
NPI Core
Program Embedding Memory
Inference
Training
```


## Training

$\varepsilon_{t}^{\text {inp }}:\left\{e_{t}, i_{t}, a_{t}\right\}$ and $\varepsilon_{t}^{\text {out }}:\left\{i_{t+1}, a_{t+1}, r_{t}\right\}$ are the execution traces
$i_{t}$ and $i_{t+1}$ are program IDs and row indices in $M^{k e y} M^{p r o g}$ of the programs to run at time $t$ and $t+1$

$$
\theta^{*}=\underset{\theta}{\arg \max } \sum_{\left(\xi^{\text {inp }}, \xi^{\text {out }}\right)} \log P\left(\xi^{\text {out }} \mid \xi^{\text {inp }} ; \theta\right)
$$

```
NPI Core
Program Embedding Memory
Inference
Training
```


## Training

$\varepsilon_{t}^{i n p}:\left\{e_{t}, i_{t}, a_{t}\right\}$ and $\varepsilon_{t}^{\text {out }}:\left\{i_{t+1}, a_{t+1}, r_{t}\right\}$ are the execution traces
$i_{t}$ and $i_{t+1}$ are program IDs and row indices in $M^{k e y} M^{p r o g}$ of the programs to run at time $t$ and $t+1$

$$
\theta^{*}=\underset{\theta}{\arg \max } \sum_{\left(\xi^{i n p}, \xi^{\text {out }}\right)} \log P\left(\xi^{\text {out }} \mid \xi^{i n p} ; \theta\right)
$$

since traces are variable length above equation can be written as:

## Training

$\varepsilon_{t}^{\text {inp }}:\left\{e_{t}, i_{t}, a_{t}\right\}$ and $\varepsilon_{t}^{\text {out }}:\left\{i_{t+1}, a_{t+1}, r_{t}\right\}$ are the execution traces
$i_{t}$ and $i_{t+1}$ are program IDs and row indices in $M^{k e y} M^{p r o g}$ of the programs to run at time $t$ and $t+1$

$$
\theta^{*}=\underset{\theta}{\arg \max } \sum_{\left(\xi^{\text {inp }}, \xi^{\text {out }}\right)} \log P\left(\xi^{\text {out }} \mid \xi^{\text {inp }} ; \theta\right)
$$

since traces are variable length above equation can be written as:

$$
\log P\left(\xi_{\text {out }} \mid \xi_{\text {inp }} ; \theta\right)=\sum_{t=1}^{T} \log P\left(\xi_{t}^{\text {out }} \mid \xi_{1}^{i n p}, \ldots, \xi_{t}^{i n p} ; \theta\right)
$$

## Training

$\varepsilon_{t}^{\text {inp }}:\left\{e_{t}, i_{t}, a_{t}\right\}$ and $\varepsilon_{t}^{\text {out }}:\left\{i_{t+1}, a_{t+1}, r_{t}\right\}$ are the execution traces
$i_{t}$ and $i_{t+1}$ are program IDs and row indices in $M^{k e y} M^{p r o g}$ of the programs to run at time $t$ and $t+1$

$$
\theta^{*}=\underset{\theta}{\arg \max } \sum_{\left(\xi^{\text {inp }}, \xi^{\text {out }}\right)} \log P\left(\xi^{\text {out }} \mid \xi^{\text {inp }} ; \theta\right)
$$

since traces are variable length above equation can be written as:

$$
\log P\left(\xi_{\text {out }} \mid \xi_{\text {inp }} ; \theta\right)=\sum_{t=1}^{T} \log P\left(\xi_{t}^{\text {out }} \mid \xi_{1}^{i n p}, \ldots, \xi_{t}^{\text {inp }} ; \theta\right)
$$

since hidden unit activations are capable of capturing temporal dependencies, right hand side can be written as:

## Training

$\varepsilon_{t}^{i n p}:\left\{e_{t}, i_{t}, a_{t}\right\}$ and $\varepsilon_{t}^{\text {out }}:\left\{i_{t+1}, a_{t+1}, r_{t}\right\}$ are the execution traces
$i_{t}$ and $i_{t+1}$ are program IDs and row indices in $M^{k e y} M^{p r o g}$ of the programs to run at time $t$ and $t+1$

$$
\theta^{*}=\underset{\theta}{\arg \max } \sum_{\left(\xi^{\text {inp }}, \xi^{\text {out }}\right)} \log P\left(\xi^{\text {out }} \mid \xi^{\text {inp }} ; \theta\right)
$$

since traces are variable length above equation can be written as:

$$
\log P\left(\xi_{\text {out }} \mid \xi_{\text {inp }} ; \theta\right)=\sum_{t=1}^{T} \log P\left(\xi_{t}^{\text {out }} \mid \xi_{1}^{i n p}, \ldots, \xi_{t}^{i n p} ; \theta\right)
$$

since hidden unit activations are capable of capturing temporal dependencies, right hand side can be written as:

$$
\log P\left(\xi_{t}^{\text {out }} \mid \xi_{1}^{\text {inp }}, \ldots, \xi_{t}^{\text {inp } p}\right)=\log P\left(i_{t+1} \mid h_{t}\right)+\log P\left(a_{t+1} \mid h_{t}\right)+\log P\left(r_{t} \mid h_{t}\right)
$$

```
NPI Core
Program Embedding Memory
Inference
Training
```


## Training

- Adaptive curriculum : sample frequency of a program is determined by model's current prediction error in that program

```
NPI Core
Program Embedding Memory
Inference
Training
```


## Training

- Adaptive curriculum : sample frequency of a program is determined by model's current prediction error in that program
- forces the model to focus on learning the program worst in execution

```
NPI Core
Program Embedding Memory
Inference
Training
```


## Training

- Adaptive curriculum : sample frequency of a program is determined by model's current prediction error in that program
- forces the model to focus on learning the program worst in execution
- Memory advantage thanks to parallel execution in sub-programs

Task and Environment Descriptions Sample Complexity and Generalization Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

## Addition

- Task: read in the digits of two base-10 numbers and produce the digits of the answer

[^3]
## Addition

- Task: read in the digits of two base-10 numbers and produce the digits of the answer
- Four pointers: one for each of the two input numbers, one for the carry, and another to write the output

[^4]
## Addition

- Task: read in the digits of two base-10 numbers and produce the digits of the answer
- Four pointers: one for each of the two input numbers, one for the carry, and another to write the output
- Model sees the current values at each pointer locations as 1-of-K encodings ${ }^{3}$ ( $K=10$ )

[^5]
## Addition

- Task: read in the digits of two base-10 numbers and produce the digits of the answer
- Four pointers: one for each of the two input numbers, one for the carry, and another to write the output
- Model sees the current values at each pointer locations as 1-of-K encodings ${ }^{3}$ ( $K=10$ )

$$
f_{\text {enc }}\left(Q, i_{1}, i_{2}, i_{3}, i_{4}, a_{t}\right)=\operatorname{MLP}\left(\left[Q\left(1, i_{1}\right), Q\left(2, i_{2}\right), Q\left(3, i_{3}\right), Q\left(4, i_{4}\right), a_{t}(1), a_{t}(2), a_{t}(3)\right]\right)
$$

$\mathrm{Q} \in R^{4 \times N \times K}$ is the scratch pad, first dimension of Q corresponds to scratch pad rows, N is the number of columns (digits) and K is the one-hot encoding dimension

[^6]Task and Environment Descriptions Sample Complexity and Generalization Learning New Programs with a Fixed Core Solving Multiple Tasks with a Single Network

## Addition

| Program | Descriptions | Calls |
| :--- | :--- | :--- |
| ADD | Perform multi-digit addition | ADD1, LSHIFT |
| ADD 1 | Perform single-digit addition | ACT, CARRY |
| CARRY | Mark a 1 in the carry row one unit left | ACT |
| LSHIFT | Shift a specified pointer one step left | ACT |
| RSHIFT | Shift a specified pointer one step right | ACT |
| ACT | Move a pointer or write to the scratch pad | - |


(a) Example scratch pad and pointers used for computing " $96+125=221$ ". Carry step is being implemented.

(b) Actual trace of addition program generated by our model on the problem shown to the left. Note that we substituted the ACT calls in the trace with more human-readable steps.

Figure: Illustration of the addition environment

## Sorting

- Task: comparing each pair of adjacent items and swaps them if they are in the wrong order (Bubble Sort ${ }^{4}$ )

[^7]
## Sorting

- Task: comparing each pair of adjacent items and swaps them if they are in the wrong order (Bubble Sort ${ }^{4}$ )

$$
f_{\text {enc }}\left(Q, i_{1}, i_{2}, a_{t}\right)=M L P\left(\left[Q\left(1, i_{1}\right), Q\left(1, i_{2}\right), a_{t}(1), a_{t}(2), a_{t}(3)\right]\right)
$$

$\mathrm{Q} \in R^{1 \times N \times K}$ is the scratch pad, N is the array length and K is the array entry embedding dimension

[^8]Task and Environment Descriptions Sample Complexity and Generalization Learning New Programs with a Fixed Core Solving Multiple Tasks with a Single Network

## Sorting

| BUBBLESORT | Perform bubble sort (ascending order) | BUBBLE, RESET |
| :--- | :--- | :--- |
| BUBBLE | Perform one sweep of pointers left to right | ACT, BSTEP |
| RESET | Move both pointers all the way left | LSHIFT |
| BSTEP | Conditionally swap and advance pointers | COMPSWAP, RSHIFT |
| COMPSWAP | Conditionally swap two elements | ACT |
| LSHIFT | Shift a specified pointer one step left | ACT |
| RSHIFT | Shift a specified pointer one step right | ACT |
| ACT | Swap two values at pointer locations or move a pointer | - |


(a) Example scratch pad and pointers used for sorting. Several steps of the BUBBLE subprogram are shown.

| $\stackrel{\text { BUBBLESORT }}{\text { BUBBLE }} \longrightarrow$ RESET |  | $\rightarrow$ BUBBLE |
| :---: | :---: | :---: |
| PTR 2 RIGHT | LSHIFT | PTR 2 RIGHT |
| BSTEP | PTR 1 LEFT | BSTEP |
| COMPSWAP | PTR 2 LEFT | COMPSWAP |
| SWAP 12 | LSHIFT | SWAP 12 |
| RSHIFT | PTR 1 LEFT | RSHIFT |
| PTR 1 RIGHT | PTR 2 LEFT | PTR 1 RIGHT |
| PTR 2 RIGHT |  | PTR 2 RIGHT |
|  | LSHIFT | ... |
| BSTEP | PTR 1 LEFT | BSTEP |
| COMPSWAP | PTR 2 LEFT | COMPSWAP |
| RSHIFT |  | RSHIFT |
| PTR 1 RIGHT |  | PTR 1 RIGHT |
| PTR 2 RIGHT |  | PTR 2 RIGHT |

(b) Excerpt from the trace of the learned bubblesort program.

Figure: Illustration of the sorting environment

## Canonicalizing 3D Models

- Task: learn a visual program that canonicalizes the model with respect to its pose


## Canonicalizing 3D Models

- Task: learn a visual program that canonicalizes the model with respect to its pose
- Nontrivial problem: different starting positions and different car models


## Canonicalizing 3D Models

- Task: learn a visual program that canonicalizes the model with respect to its pose
- Nontrivial problem: different starting positions and different car models

$$
f_{\text {enc }}\left(Q, x, i_{1}, i_{2}, a_{t}\right)=\operatorname{MLP}\left(\left[Q\left(1, i_{1}\right), Q\left(2, i_{2}\right), f_{C N N}(x), a_{t}(1), a_{t}(2), a_{t}(3)\right]\right)
$$

$x \in R^{H \times W \times 3}$ is the car rendering and $Q \in R^{2 \times 1 \times K}$ is the scratch pad, first dimension of $Q$ corresponds to $i_{1}, i_{2}$ (fixed at 1) which are the pointer locations of the azimuth and elevation and $\mathrm{K}(=24)$ is the one-hot encoding dimension of pose coordinates

Introduction
Related Work Model
Experiments
Conclusion

Task and Environment Descriptions
Sample Complexity and Generalization
Learning New Programs with a Fixed Core
Solving Multiple Tasks with a Single Network

## Canonicalizing 3D Models

| GOTO | Change 3D car pose to match the target | HGOTO, VGOTO |
| :--- | :--- | :--- |
| HGOTO | Move horizontally to the target angle | LGOTO, RGOTO |
| LGOTO | Move left to match the target angle | ACT |
| RGOTO | Move right to match the target angle | ACT |
| VGOTO | Move vertically to the target elevation | UGOTO, DGOTO |
| UGOTO | Move up to match the target elevation | ACT |
| DGOTO | Move down to match the target elevation | ACT |
| ACT | Move camera $15^{\circ}$ up, down, left or right | - |



Figure: canonicalization of several different test set cars

## Sample Complexity on Bubble Sort Problem

- Memory requirements is reduced from $\mathbf{O}\left(\mathbf{n}^{2}\right)$ to $\mathbf{O}(n)$ thanks to compositional structure of the model


## Sample Complexity on Bubble Sort Problem

- Memory requirements is reduced from $\mathbf{O}\left(\mathbf{n}^{2}\right)$ to $\mathbf{O}(n)$ thanks to compositional structure of the model
- Number of required training samples are also reduced:


Figure: Test accuracy by the varying sample complexity

## Generalization on Bubble Sort Problem

- Training the model with variable-sized input (single-digit numbers from length 2 to length 20)


## Generalization on Bubble Sort Problem

- Training the model with variable-sized input (single-digit numbers from length 2 to length 20)
- Adding a third pointer that acts as a counter to handle variable-sized inputs


## Generalization on Bubble Sort Problem

- Training the model with variable-sized input (single-digit numbers from length 2 to length 20)
- Adding a third pointer that acts as a counter to handle variable-sized inputs
- Checking the success of the model on the inputs of previously unseen size to check how much the problem is learned


## Generalization on Bubble Sort Problem

- Training the model with variable-sized input (single-digit numbers from length 2 to length 20)
- Adding a third pointer that acts as a counter to handle variable-sized inputs
- Checking the success of the model on the inputs of previously unseen size to check how much the problem is learned


Figure: Strong vs. weak generalization

## Generalization on 3D Canonicalization Problem

- NPI is able to canonicalize cars of varying appearance from multiple starting positions


## Generalization on 3D Canonicalization Problem

- NPI is able to canonicalize cars of varying appearance from multiple starting positions
- NPI can generalize to car appearances not encountered in the training


## Generalization on 3D Canonicalization Problem

- NPI is able to canonicalize cars of varying appearance from multiple starting positions
- NPI can generalize to car appearances not encountered in the training


Figure: canonicalization of several different test set cars

Introduction

## Learning New Programs with a Fixed Core

- Fixing all the weights of core routing module


## Learning New Programs with a Fixed Core

- Fixing all the weights of core routing module
- Only updating memory slots of the new programs


## Prevent Existing Programs from Calling Subsequently Added Programs

- Looking back at the training data for known programs


## Prevent Existing Programs from Calling Subsequently Added Programs

- Looking back at the training data for known programs
- Allowing addition of new programs


## Solving Multiple Tasks with a Single Network

| Task | Single | Multi | + Max |
| :--- | :---: | :---: | :---: |
| Addition | 100.0 | 97.0 | 97.0 |
| Sorting | 100.0 | 100.0 | 100.0 |
| Canon. seen car | 89.5 | 91.4 | 91.4 |
| Canon. unseen | 88.7 | 89.9 | 89.9 |
| Maximum | - | - | 100.0 |

Per-sequence \% accuracy

- NPI learns MAX perfectly without forgetting the other tasks


## Solving Multiple Tasks with a Single Network

| Task | Single | Multi | + Max |
| :--- | :---: | :---: | :---: |
| Addition | 100.0 | 97.0 | 97.0 |
| Sorting | 100.0 | 100.0 | 100.0 |
| Canon. seen car | 89.5 | 91.4 | 91.4 |
| Canon. unseen | 88.7 | 89.9 | 89.9 |
| Maximum | - | - | 100.0 |

Per-sequence \% accuracy

- NPI learns MAX perfectly without forgetting the other tasks
- One multi-task NPI can learn all three programs with comparable accuracy compared to each single-task NPI


## Conclusion

Neural Programmer-Interpreters (NPI)

- learns several programs by using a single core model


## Conclusion

Neural Programmer-Interpreters (NPI)

- learns several programs by using a single core model
- reduces sample complexity


## Conclusion

Neural Programmer-Interpreters (NPI)

- learns several programs by using a single core model
- reduces sample complexity
- provides strong generalization


## Conclusion

Neural Programmer-Interpreters (NPI)

- learns several programs by using a single core model
- reduces sample complexity
- provides strong generalization
- works for dissimilar environments


## Conclusion

Neural Programmer-Interpreters (NPI)

- learns several programs by using a single core model
- reduces sample complexity
- provides strong generalization
- works for dissimilar environments
- learns new programs without forgetting already learned ones


## Thank you!




[^0]:    ${ }^{1}$ Reed, S., and De Freitas, N. (2015). Neural programmer-interpreters. arXiv.

[^1]:    ${ }^{2}$ Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages 41-48

[^2]:    ${ }^{2}$ Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages 41-48

[^3]:    ${ }^{3}$ https://en.wikipedia.org/wiki/One-hot

[^4]:    ${ }^{3}$ https://en.wikipedia.org/wiki/One-hot

[^5]:    ${ }^{3}$ https://en.wikipedia.org/wiki/One-hot

[^6]:    ${ }^{3}$ https://en.wikipedia.org/wiki/One-hot

[^7]:    ${ }^{4}$ https://en.wikipedia.org/wiki/Bubble_sort

[^8]:    ${ }^{4}$ https://en.wikipedia.org/wiki/Bubble_sort

