
python3

September 25, 2017

1 CS131 Python 3 Tutorial

Adapted by Ranjay Krishna from the CS228 Python 2 tutorial.

1.1 Introduction

Python is a great general-purpose programming language on its own, but with the help of a few
popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific com-
puting.

We expect that many of you will have some experience with Python and numpy; for the rest
of you, this section will serve as a quick crash course both on the Python programming language
and on the use of Python for scientific computing.

In this tutorial, we will cover:

• Basic Python: Basic data types (Containers, Lists, Dictionaries, Sets, Tuples), Functions,
Classes

• Numpy: Arrays, Array indexing, Datatypes, Array math, Broadcasting
• Matplotlib: Plotting, Subplots, Images
• IPython: Creating notebooks, Typical workflows

1.2 Basics of Python

Python is a high-level, dynamically typed multiparadigm programming language. Python code
is often said to be almost like pseudocode, since it allows you to express very powerful ideas in
very few lines of code while being very readable. As an example, here is an implementation of the
classic quicksort algorithm in Python:

In [5]: def quicksort(arr):

if len(arr) <= 1:

return arr

pivot = arr[int(len(arr) / 2)]

left = [x for x in arr if x < pivot]

middle = [x for x in arr if x == pivot]

right = [x for x in arr if x > pivot]

return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))

1

http://ranjaykrishna.com

[1, 1, 2, 3, 6, 8, 10]

In [9]: def fibonacci(n):

if n <= 1:

return 1

return fibonacci(n-2) + fibonacci(n-1)

print(fibonacci(0))

print(fibonacci(1))

print(fibonacci(2))

print(fibonacci(3))

print(fibonacci(4))

1

1

2

3

5

1.2.1 Python versions

There are currently two different supported versions of Python, 2.7 and 3.4. Somewhat confus-
ingly, Python 3.0 introduced many backwards-incompatible changes to the language, so code
written for 2.7 may not work under 3.4 and vice versa. For this class all code will use Python
3.4.

You can check your Python version at the command line by running python --version.

1.2.2 Basic data types

Numbers Integers and floats work as you would expect from other languages:

In [12]: x = 3

print(x), type(x)

3

Out[12]: (None, int)

In [13]: print(x + 1) # Addition;

print(x - 1) # Subtraction;

print(x * 2) # Multiplication;

print(x ** 2) # Exponentiation;

4

2

6

9

2

In [14]: x += 1

print(x) # Prints "4"

x *= 2

print(x) # Prints "8"

4

8

In [15]: y = 2.5

print(type(y)) # Prints "<type 'float'>"

print(y, y + 1, y * 2, y ** 2) # Prints "2.5 3.5 5.0 6.25"

<class 'float'>

2.5 3.5 5.0 6.25

Note that unlike many languages, Python does not have unary increment (x++) or decrement
(x--) operators.

Python also has built-in types for long integers and complex numbers; you can find all of the
details in the documentation.

Booleans Python implements all of the usual operators for Boolean logic, but uses English words
rather than symbols (&&, ||, etc.):

In [16]: t, f = True, False

print(type(t)) # Prints "<type 'bool'>"

<class 'bool'>

Now we let’s look at the operations:

In [17]: print(t and f) # Logical AND;

print(t or f) # Logical OR;

print(not t) # Logical NOT;

print(t != f) # Logical XOR;

False

True

False

True

Strings

In [18]: hello = 'hello' # String literals can use single quotes

world = "world" # or double quotes; it does not matter.

print(hello, len(hello))

3

https://docs.python.org/2/library/stdtypes.html#numeric-types-int-float-long-complex

hello 5

In [19]: hw = hello + ' ' + world # String concatenation

print(hw) # prints "hello world"

hello world

In [20]: hw12 = '%s %s %d' % (hello, world, 12) # sprintf style string formatting

print(hw12) # prints "hello world 12"

hello world 12

String objects have a bunch of useful methods; for example:

In [21]: s = "hello"

print(s.capitalize()) # Capitalize a string; prints "Hello"

print(s.upper()) # Convert a string to uppercase; prints "HELLO"

print(s.rjust(7)) # Right-justify a string, padding with spaces; prints " hello"

print(s.center(7)) # Center a string, padding with spaces; prints " hello "

print(s.replace('l', '(ell)')) # Replace all instances of one substring with another;

prints "he(ell)(ell)o"

print(' world '.strip()) # Strip leading and trailing whitespace; prints "world"

Hello

HELLO

hello

hello

he(ell)(ell)o

world

You can find a list of all string methods in the documentation.

1.2.3 Containers

Python includes several built-in container types: lists, dictionaries, sets, and tuples.

Lists A list is the Python equivalent of an array, but is resizeable and can contain elements of
different types:

In [22]: xs = [3, 1, 2] # Create a list

print(xs, xs[2])

print(xs[-1]) # Negative indices count from the end of the list; prints "2"

[3, 1, 2] 2

2

4

https://docs.python.org/2/library/stdtypes.html#string-methods

In [23]: xs[2] = 'foo' # Lists can contain elements of different types

print(xs)

[3, 1, 'foo']

In [24]: xs.append('bar') # Add a new element to the end of the list

print(xs)

[3, 1, 'foo', 'bar']

In [25]: x = xs.pop() # Remove and return the last element of the list

print(x, xs)

bar [3, 1, 'foo']

As usual, you can find all the gory details about lists in the documentation.

Slicing In addition to accessing list elements one at a time, Python provides concise syntax to
access sublists; this is known as slicing:

In [28]: nums = [1,2,3,4,5] # range is a built-in function that creates a list of integers

print(nums) # Prints "[0, 1, 2, 3, 4]"

print(nums[2:4]) # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"

print(nums[2:]) # Get a slice from index 2 to the end; prints "[2, 3, 4]"

print(nums[:2]) # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"

print(nums[:]) # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"

print(nums[:-1]) # Slice indices can be negative; prints ["0, 1, 2, 3]"

nums[2:4] = [8, 9] # Assign a new sublist to a slice

print(nums) # Prints "[0, 1, 8, 8, 4]"

[1, 2, 3, 4, 5]

[3, 4]

[3, 4, 5]

[1, 2]

[1, 2, 3, 4, 5]

[1, 2, 3, 4]

[1, 2, 8, 9, 5]

Loops You can loop over the elements of a list like this:

In [29]: animals = ['cat', 'dog', 'monkey']

for animal in animals:

print(animal)

5

https://docs.python.org/2/tutorial/datastructures.html#more-on-lists

cat

dog

monkey

If you want access to the index of each element within the body of a loop, use the built-in
enumerate function:

In [30]: animals = ['cat', 'dog', 'monkey']

for idx, animal in enumerate(animals):

print('#%d: %s' % (idx + 1, animal))

#1: cat

#2: dog

#3: monkey

List comprehensions: When programming, frequently we want to transform one type of data
into another. As a simple example, consider the following code that computes square numbers:

In [31]: nums = [0, 1, 2, 3, 4]

squares = []

for x in nums:

squares.append(x ** 2)

print(squares)

[0, 1, 4, 9, 16]

You can make this code simpler using a list comprehension:

In [32]: nums = [0, 1, 2, 3, 4]

squares = [x ** 2 for x in nums]

print(squares)

[0, 1, 4, 9, 16]

List comprehensions can also contain conditions:

In [33]: nums = [0, 1, 2, 3, 4]

even_squares = [x ** 2 for x in nums if x % 2 == 0]

print(even_squares)

[0, 4, 16]

6

Dictionaries A dictionary stores (key, value) pairs, similar to a Map in Java or an object in
Javascript. You can use it like this:

In [35]: d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some data

print(d['cat']) # Get an entry from a dictionary; prints "cute"

print('cat' in d) # Check if a dictionary has a given key; prints "True"

cute

True

In [36]: d['fish'] = 'wet' # Set an entry in a dictionary

print(d['fish']) # Prints "wet"

wet

In [37]: print(d['monkey']) # KeyError: 'monkey' not a key of d

KeyError Traceback (most recent call last)

<ipython-input-37-e3ac4f3aa8c2> in <module>()

----> 1 print(d['monkey']) # KeyError: 'monkey' not a key of d

KeyError: 'monkey'

In [38]: print(d.get('monkey', 'N/A')) # Get an element with a default; prints "N/A"

print(d.get('fish', 'N/A')) # Get an element with a default; prints "wet"

N/A

wet

In [39]: del d['fish'] # Remove an element from a dictionary

print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"

N/A

You can find all you need to know about dictionaries in the documentation.
It is easy to iterate over the keys in a dictionary:

In [40]: d = {'person': 2, 'cat': 4, 'spider': 8}

for animal in d:

legs = d[animal]

print('A %s has %d legs' % (animal, legs))

7

https://docs.python.org/2/library/stdtypes.html#dict

A person has 2 legs

A spider has 8 legs

A cat has 4 legs

If you want access to keys and their corresponding values, use the iteritems method:

In [42]: d = {'person': 2, 'cat': 4, 'spider': 8}

for animal, legs in d.items():

print('A %s has %d legs' % (animal, legs))

A person has 2 legs

A spider has 8 legs

A cat has 4 legs

Dictionary comprehensions: These are similar to list comprehensions, but allow you to easily
construct dictionaries. For example:

In [43]: nums = [0, 1, 2, 3, 4]

even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}

print(even_num_to_square)

{0: 0, 2: 4, 4: 16}

Sets A set is an unordered collection of distinct elements. As a simple example, consider the
following:

In [44]: animals = {'cat', 'dog'}

print('cat' in animals) # Check if an element is in a set; prints "True"

print('fish' in animals) # prints "False"

True

False

In [46]: animals.add('fish') # Add an element to a set

print('fish' in animals)

print(len(animals)) # Number of elements in a set;

True

3

In [47]: animals.add('cat') # Adding an element that is already in the set does nothing

print(len(animals))

animals.remove('cat') # Remove an element from a set

print(len(animals))

8

3

2

Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are
unordered, you cannot make assumptions about the order in which you visit the elements of the
set:

In [48]: animals = {'cat', 'dog', 'fish'}

for idx, animal in enumerate(animals):

print('#%d: %s' % (idx + 1, animal))

Prints "#1: fish", "#2: dog", "#3: cat"

#1: fish

#2: dog

#3: cat

Set comprehensions: Like lists and dictionaries, we can easily construct sets using set compre-
hensions:

In [49]: from math import sqrt

print({int(sqrt(x)) for x in range(30)})

{0, 1, 2, 3, 4, 5}

Tuples A tuple is an (immutable) ordered list of values. A tuple is in many ways similar to a
list; one of the most important differences is that tuples can be used as keys in dictionaries and as
elements of sets, while lists cannot. Here is a trivial example:

In [50]: d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keys

t = (5, 6) # Create a tuple

print(type(t))

print(d[t])

print(d[(1, 2)])

<class 'tuple'>

5

1

In [176]: t[0] = 1

TypeError Traceback (most recent call last)

<ipython-input-176-0a69537257d5> in <module>()

9

----> 1 t[0] = 1

TypeError: 'tuple' object does not support item assignment

1.2.4 Functions

Python functions are defined using the def keyword. For example:

In [51]: def sign(x):

if x > 0:

return 'positive'

elif x < 0:

return 'negative'

else:

return 'zero'

for x in [-1, 0, 1]:

print(sign(x))

negative

zero

positive

We will often define functions to take optional keyword arguments, like this:

In [52]: def hello(name, loud=False):

if loud:

print('HELLO, %s' % name.upper())

else:

print('Hello, %s!' % name)

hello('Bob')

hello('Fred', loud=True)

Hello, Bob!

HELLO, FRED

1.2.5 Classes

The syntax for defining classes in Python is straightforward:

In [53]: class Greeter:

Constructor

def __init__(self, name):

10

self.name = name # Create an instance variable

Instance method

def greet(self, loud=False):

if loud:

print('HELLO, %s!' % self.name.upper())

else:

print('Hello, %s' % self.name)

g = Greeter('Fred') # Construct an instance of the Greeter class

g.greet() # Call an instance method; prints "Hello, Fred"

g.greet(loud=True) # Call an instance method; prints "HELLO, FRED!"

Hello, Fred

HELLO, FRED!

1.3 Numpy

Numpy is the core library for scientific computing in Python. It provides a high-performance
multidimensional array object, and tools for working with these arrays. If you are already familiar
with MATLAB, you might find this tutorial useful to get started with Numpy.

To use Numpy, we first need to import the numpy package:

In [58]: import numpy as np

1.3.1 Arrays

A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnegative
integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of
integers giving the size of the array along each dimension.

We can initialize numpy arrays from nested Python lists, and access elements using square
brackets:

In [59]: a = np.array([1, 2, 3]) # Create a rank 1 array

print(type(a), a.shape, a[0], a[1], a[2])

a[0] = 5 # Change an element of the array

print(a)

<class 'numpy.ndarray'> (3,) 1 2 3

[5 2 3]

In [60]: b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array

print(b)

[[1 2 3]

[4 5 6]]

11

http://wiki.scipy.org/NumPy_for_Matlab_Users

In [61]: print(b.shape)

print(b[0, 0], b[0, 1], b[1, 0])

(2, 3)

1 2 4

Numpy also provides many functions to create arrays:

In [62]: a = np.zeros((2,2)) # Create an array of all zeros

print(a)

[[0. 0.]

[0. 0.]]

In [63]: b = np.ones((1,2)) # Create an array of all ones

print(b)

[[1. 1.]]

In [64]: c = np.full((2,2), 7) # Create a constant array

print(c)

[[7 7]

[7 7]]

In [65]: d = np.eye(2) # Create a 2x2 identity matrix

print(d)

[[1. 0.]

[0. 1.]]

In [66]: e = np.random.random((2,2)) # Create an array filled with random values

print(e)

[[0.72534879 0.18028294]

[0.72548017 0.2593257]]

1.3.2 Array indexing

Numpy offers several ways to index into arrays.
Slicing: Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimen-

sional, you must specify a slice for each dimension of the array:

12

In [67]: import numpy as np

Create the following rank 2 array with shape (3, 4)

[[1 2 3 4]

[5 6 7 8]

[9 10 11 12]]

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

Use slicing to pull out the subarray consisting of the first 2 rows

and columns 1 and 2; b is the following array of shape (2, 2):

[[2 3]

[6 7]]

b = a[:2, 1:3]

print(b)

[[2 3]

[6 7]]

A slice of an array is a view into the same data, so modifying it will modify the original array.

In [69]: print(a[0, 1])

b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]

print(a[0, 1])

2

77

You can also mix integer indexing with slice indexing. However, doing so will yield an array
of lower rank than the original array. Note that this is quite different from the way that MATLAB
handles array slicing:

In [209]: # Create the following rank 2 array with shape (3, 4)

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

print(a)

[[1 2 3 4]

[5 6 7 8]

[9 10 11 12]]

Two ways of accessing the data in the middle row of the array. Mixing integer indexing with
slices yields an array of lower rank, while using only slices yields an array of the same rank as the
original array:

In [70]: row_r1 = a[1, :] # Rank 1 view of the second row of a

row_r2 = a[1:2, :] # Rank 2 view of the second row of a

row_r3 = a[[1], :] # Rank 2 view of the second row of a

print(row_r1, row_r1.shape)

print(row_r2, row_r2.shape)

print(row_r3, row_r3.shape)

13

[5 6 7 8] (4,)

[[5 6 7 8]] (1, 4)

[[5 6 7 8]] (1, 4)

In [72]: # We can make the same distinction when accessing columns of an array:

col_r1 = a[:, 1]

col_r2 = a[:, 1:2]

print(col_r1, col_r1.shape)

print()

print(col_r2, col_r2.shape)

[77 6 10] (3,)

[[77]

[6]

[10]] (3, 1)

Integer array indexing: When you index into numpy arrays using slicing, the resulting array
view will always be a subarray of the original array. In contrast, integer array indexing allows you
to construct arbitrary arrays using the data from another array. Here is an example:

In [73]: a = np.array([[1,2], [3, 4], [5, 6]])

An example of integer array indexing.

The returned array will have shape (3,) and

print(a[[0, 1, 2], [0, 1, 0]])

The above example of integer array indexing is equivalent to this:

print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

[1 4 5]

[1 4 5]

In [74]: # When using integer array indexing, you can reuse the same

element from the source array:

print(a[[0, 0], [1, 1]])

Equivalent to the previous integer array indexing example

print(np.array([a[0, 1], a[0, 1]]))

[2 2]

[2 2]

One useful trick with integer array indexing is selecting or mutating one element from each
row of a matrix:

14

In [75]: # Create a new array from which we will select elements

a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

print(a)

[[1 2 3]

[4 5 6]

[7 8 9]

[10 11 12]]

In [76]: # Create an array of indices

b = np.array([0, 2, 0, 1])

Select one element from each row of a using the indices in b

print(a[np.arange(4), b]) # Prints "[1 6 7 11]"

[1 6 7 11]

In [77]: # Mutate one element from each row of a using the indices in b

a[np.arange(4), b] += 10

print(a)

[[11 2 3]

[4 5 16]

[17 8 9]

[10 21 12]]

Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an
array. Frequently this type of indexing is used to select the elements of an array that satisfy some
condition. Here is an example:

In [78]: import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2) # Find the elements of a that are bigger than 2;

this returns a numpy array of Booleans of the same

shape as a, where each slot of bool_idx tells

whether that element of a is > 2.

print(bool_idx)

[[False False]

[True True]

[True True]]

15

In [80]: # We use boolean array indexing to construct a rank 1 array

consisting of the elements of a corresponding to the True values

of bool_idx

print(a[bool_idx])

We can do all of the above in a single concise statement:

print(a[a > 2])

[3 4 5 6]

[3 4 5 6]

For brevity we have left out a lot of details about numpy array indexing; if you want to know
more you should read the documentation.

1.3.3 Datatypes

Every numpy array is a grid of elements of the same type. Numpy provides a large set of numeric
datatypes that you can use to construct arrays. Numpy tries to guess a datatype when you create
an array, but functions that construct arrays usually also include an optional argument to explicitly
specify the datatype. Here is an example:

In [81]: x = np.array([1, 2]) # Let numpy choose the datatype

y = np.array([1.0, 2.0]) # Let numpy choose the datatype

z = np.array([1, 2], dtype=np.int64) # Force a particular datatype

print(x.dtype, y.dtype, z.dtype)

int64 float64 int64

You can read all about numpy datatypes in the documentation.

1.3.4 Array math

Basic mathematical functions operate elementwise on arrays, and are available both as operator
overloads and as functions in the numpy module:

In [82]: x = np.array([[1,2],[3,4]], dtype=np.float64)

y = np.array([[5,6],[7,8]], dtype=np.float64)

Elementwise sum; both produce the array

print(x + y)

print(np.add(x, y))

[[6. 8.]

[10. 12.]]

[[6. 8.]

[10. 12.]]

16

http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

In [83]: # Elementwise difference; both produce the array

print(x - y)

print(np.subtract(x, y))

[[-4. -4.]

[-4. -4.]]

[[-4. -4.]

[-4. -4.]]

In [84]: # Elementwise product; both produce the array

print(x * y)

print(np.multiply(x, y))

[[5. 12.]

[21. 32.]]

[[5. 12.]

[21. 32.]]

In [85]: # Elementwise division; both produce the array

[[0.2 0.33333333]

[0.42857143 0.5]]

print(x / y)

print(np.divide(x, y))

[[0.2 0.33333333]

[0.42857143 0.5]]

[[0.2 0.33333333]

[0.42857143 0.5]]

In [86]: # Elementwise square root; produces the array

[[1. 1.41421356]

[1.73205081 2.]]

print(np.sqrt(x))

[[1. 1.41421356]

[1.73205081 2.]]

Note that unlike MATLAB, * is elementwise multiplication, not matrix multiplication. We
instead use the dot function to compute inner products of vectors, to multiply a vector by a matrix,
and to multiply matrices. dot is available both as a function in the numpy module and as an
instance method of array objects:

In [87]: x = np.array([[1,2],[3,4]])

y = np.array([[5,6],[7,8]])

17

v = np.array([9,10])

w = np.array([11, 12])

Inner product of vectors; both produce 219

print(v.dot(w))

print(np.dot(v, w))

219

219

In [88]: # Matrix / vector product; both produce the rank 1 array [29 67]

print(x.dot(v))

print(np.dot(x, v))

[29 67]

[29 67]

In [89]: # Matrix / matrix product; both produce the rank 2 array

[[19 22]

[43 50]]

print(x.dot(y))

print(np.dot(x, y))

[[19 22]

[43 50]]

[[19 22]

[43 50]]

Numpy provides many useful functions for performing computations on arrays; one of the
most useful is sum:

In [90]: x = np.array([[1,2],[3,4]])

print(np.sum(x)) # Compute sum of all elements; prints "10"

print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"

print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

10

[4 6]

[3 7]

You can find the full list of mathematical functions provided by numpy in the documentation.
Apart from computing mathematical functions using arrays, we frequently need to reshape or

otherwise manipulate data in arrays. The simplest example of this type of operation is transposing
a matrix; to transpose a matrix, simply use the T attribute of an array object:

18

http://docs.scipy.org/doc/numpy/reference/routines.math.html

In [91]: print(x)

print(x.T)

[[1 2]

[3 4]]

[[1 3]

[2 4]]

In [92]: v = np.array([[1,2,3]])

print(v)

print(v.T)

[[1 2 3]]

[[1]

[2]

[3]]

1.3.5 Broadcasting

Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes
when performing arithmetic operations. Frequently we have a smaller array and a larger array,
and we want to use the smaller array multiple times to perform some operation on the larger
array.

For example, suppose that we want to add a constant vector to each row of a matrix. We could
do it like this:

In [93]: # We will add the vector v to each row of the matrix x,

storing the result in the matrix y

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

v = np.array([1, 0, 1])

y = np.empty_like(x) # Create an empty matrix with the same shape as x

Add the vector v to each row of the matrix x with an explicit loop

for i in range(4):

y[i, :] = x[i, :] + v

print(y)

[[2 2 4]

[5 5 7]

[8 8 10]

[11 11 13]]

This works; however when the matrix x is very large, computing an explicit loop in Python
could be slow. Note that adding the vector v to each row of the matrix x is equivalent to forming
a matrix vv by stacking multiple copies of v vertically, then performing elementwise summation
of x and vv. We could implement this approach like this:

19

In [94]: vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other

print(vv) # Prints "[[1 0 1]

[1 0 1]

[1 0 1]

[1 0 1]]"

[[1 0 1]

[1 0 1]

[1 0 1]

[1 0 1]]

In [95]: y = x + vv # Add x and vv elementwise

print(y)

[[2 2 4]

[5 5 7]

[8 8 10]

[11 11 13]]

Numpy broadcasting allows us to perform this computation without actually creating multiple
copies of v. Consider this version, using broadcasting:

In [96]: import numpy as np

We will add the vector v to each row of the matrix x,

storing the result in the matrix y

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

v = np.array([1, 0, 1])

y = x + v # Add v to each row of x using broadcasting

print(y)

[[2 2 4]

[5 5 7]

[8 8 10]

[11 11 13]]

The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to broad-
casting; this line works as if v actually had shape (4, 3), where each row was a copy of v, and the
sum was performed elementwise.

Broadcasting two arrays together follows these rules:

1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s
until both shapes have the same length.

2. The two arrays are said to be compatible in a dimension if they have the same size in the
dimension, or if one of the arrays has size 1 in that dimension.

3. The arrays can be broadcast together if they are compatible in all dimensions.

20

4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum
of shapes of the two input arrays.

5. In any dimension where one array had size 1 and the other array had size greater than 1, the
first array behaves as if it were copied along that dimension

If this explanation does not make sense, try reading the explanation from the documentation
or this explanation.

Functions that support broadcasting are known as universal functions. You can find the list of
all universal functions in the documentation.

Here are some applications of broadcasting:

In [97]: # Compute outer product of vectors

v = np.array([1,2,3]) # v has shape (3,)

w = np.array([4,5]) # w has shape (2,)

To compute an outer product, we first reshape v to be a column

vector of shape (3, 1); we can then broadcast it against w to yield

an output of shape (3, 2), which is the outer product of v and w:

print(np.reshape(v, (3, 1)) * w)

[[4 5]

[8 10]

[12 15]]

In [98]: # Add a vector to each row of a matrix

x = np.array([[1,2,3], [4,5,6]])

x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),

giving the following matrix:

print(x + v)

[[2 4 6]

[5 7 9]]

In [99]: # Add a vector to each column of a matrix

x has shape (2, 3) and w has shape (2,).

If we transpose x then it has shape (3, 2) and can be broadcast

against w to yield a result of shape (3, 2); transposing this result

yields the final result of shape (2, 3) which is the matrix x with

the vector w added to each column. Gives the following matrix:

print((x.T + w).T)

[[5 6 7]

[9 10 11]]

21

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://wiki.scipy.org/EricsBroadcastingDoc
http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs

In [100]: # Another solution is to reshape w to be a row vector of shape (2, 1);

we can then broadcast it directly against x to produce the same

output.

print(x + np.reshape(w, (2, 1)))

[[5 6 7]

[9 10 11]]

In [101]: # Multiply a matrix by a constant:

x has shape (2, 3). Numpy treats scalars as arrays of shape ();

these can be broadcast together to shape (2, 3), producing the

following array:

print(x * 2)

[[2 4 6]

[8 10 12]]

Broadcasting typically makes your code more concise and faster, so you should strive to use it
where possible.

This brief overview has touched on many of the important things that you need to know about
numpy, but is far from complete. Check out the numpy reference to find out much more about
numpy.

1.4 Matplotlib

Matplotlib is a plotting library. In this section give a brief introduction to the matplotlib.pyplot

module, which provides a plotting system similar to that of MATLAB.

In [102]: import matplotlib.pyplot as plt

By running this special iPython command, we will be displaying plots inline:

In [103]: %matplotlib inline

1.4.1 Plotting

The most important function in matplotlib is plot, which allows you to plot 2D data. Here is a
simple example:

In [252]: # Compute the x and y coordinates for points on a sine curve

x = np.arange(0, 3 * np.pi, 0.1)

y = np.sin(x)

Plot the points using matplotlib

plt.plot(x, y))

Out[252]: [<matplotlib.lines.Line2D at 0x112d11710>]

22

http://docs.scipy.org/doc/numpy/reference/

With just a little bit of extra work we can easily plot multiple lines at once, and add a title,
legend, and axis labels:

In [254]: y_cos = np.cos(x)

Plot the points using matplotlib

plt.plot(x, y_sin)

plt.plot(x, y_cos)

plt.xlabel('x axis label')

plt.ylabel('y axis label')

plt.title('Sine and Cosine')

plt.legend(['Sine', 'Cosine'])

Out[254]: <matplotlib.legend.Legend at 0x11739ac50>

23

1.4.2 Subplots

You can plot different things in the same figure using the subplot function. Here is an example:

In [255]: # Compute the x and y coordinates for points on sine and cosine curves

x = np.arange(0, 3 * np.pi, 0.1)

y_sin = np.sin(x)

y_cos = np.cos(x)

Set up a subplot grid that has height 2 and width 1,

and set the first such subplot as active.

plt.subplot(2, 1, 1)

Make the first plot

plt.plot(x, y_sin)

plt.title('Sine')

Set the second subplot as active, and make the second plot.

plt.subplot(2, 1, 2)

plt.plot(x, y_cos)

plt.title('Cosine')

Show the figure.

plt.show()

24

You can read much more about the subplot function in the documentation.

25

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplot

	CS131 Python 3 Tutorial
	Introduction
	Basics of Python
	Python versions
	Basic data types
	Containers
	Functions
	Classes

	Numpy
	Arrays
	Array indexing
	Datatypes
	Array math
	Broadcasting

	Matplotlib
	Plotting
	Subplots

