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ABSTRACT
Large search engines process thousands of queries per second over
billions of documents, making query processing a major perfor-
mance bottleneck. An important class of optimization techniques
called early termination achieves faster query processing by avoid-
ing the scoring of documents that are unlikely to be in the top re-
sults. We study new algorithms for early termination that outper-
form previous methods. In particular, we focus on safe techniques
for disjunctive queries, which return the same result as an exhaus-
tive evaluation over the disjunction of the query terms. The cur-
rent state-of-the-art methods for this case, the WAND algorithm by
Broder et al. [11] and the approach of Strohman and Croft [30],
achieve great benefits but still leave a large performance gap be-
tween disjunctive and (even non-early terminated) conjunctive que-
ries.

We propose a new set of algorithms by introducing a simple aug-
mented inverted index structure called a block-max index. Essen-
tially, this is a structure that stores the maximum impact score for
each block of a compressed inverted list in uncompressed form,
thus enabling us to skip large parts of the lists. We show how to
integrate this structure into the WAND approach, leading to consid-
erable performance gains. We then describe extensions to a layered
index organization, and to indexes with reassigned document IDs,
that achieve additional gains that narrow the gap between disjunc-
tive and conjunctive top-k query processing.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval.

General Terms
Algorithms, Performance.

Keywords
IR query processing, top-k query processing, early termination, in-
verted index.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’11, July 24–28, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

1. INTRODUCTION
Due to the rapid growth of the web, more and more people are

relying on search engines to locate useful information. As a result,
an increasing share of the world’s computational resources is spent
on search-related tasks. Current large-scale search engines have to
be able to answer hundreds of millions of queries per day on tens of
billions of web pages. Thus, highly optimized methods are needed
to efficiently process all these queries.

One major bottleneck in query processing is the length of the
inverted list index structures (described in the next section), which
can easily grow to hundreds of MBs or even GBs for common terms
(roughly linear in the size of the data set). Given that search engines
need to answer user queries within fractions of a second, naively
traversing this basic index structure, which could take hundreds of
milliseconds or more for common terms, is not acceptable.

This basic problem has long been recognized by researchers, and
has motivated a lot of work on optimization techniques includ-
ing distributed computation [29, 5, 24], index compression [37],
caching [7, 22], and early termination [31, 12] (also called prun-
ing or optimized top-k processing). In this paper we focus on early
termination, which in a nutshell means returning the best k = 10
or 100 results without an exhaustive traversal of the relevant in-
dex structures. In particular, we propose to augment the index by
adding additional information. Essentially, we add to each com-
pressed block in the inverted lists one value, the maximum impact
score. While this is a simple idea, we are not aware of any pre-
vious work that stores such information for better query process-
ing. We call this modified index structure a Block-Max Index. We
also propose a new set of algorithms based on the WAND approach
[11] for safe early termination (where exactly the same results as in
the naive baseline are returned) using our block-max index struc-
ture. One interesting property of our algorithms is that they per-
forms document-at-a-time (DAAT) index traversal, based on either
document-sorted or impact-layered index structures.

2. BACKGROUND
In this section, we provide background on inverted index struc-

tures, query processing, and early termination.

2.1 Inverted Indexes and Index Compression
Current search engines perform query processing based on an in-

verted index, which is a simple and efficient data structure that al-
lows us to find documents that contain a particular term [37]. Given
a collection of N documents, we assume that each document is
identified by a unique document ID (docID) between 0 and N −1.
An inverted index consists of many inverted lists, where each in-
verted list Lw is a list of postings describing all places where term
w occurs in the collection. More precisely, each posting contains



the docID of a document that contains the term w, the number of oc-
currences of w in the document (called frequency), and sometimes
the exact locations of these occurrences in the document (called
positions), plus maybe other context such as font size etc. Postings
in an inverted list are typically sorted by docID, or sometimes by
some other measure (described later). Thus, in the case where we
store docIDs and frequencies, each posting is of the form (di, fi).
We focus on this case in this paper, but all our techniques also ap-
ply to cases where positions, context information, or precomputed
quantized impact scores are stored.

The inverted lists of common query terms may consist of many
millions or even billions of postings. To allow faster access to lists
on disk, and limit the memory needed, search engines use sophis-
ticated compression techniques that significantly reduce the size of
each inverted list [37]. Compression is crucial for search engine
performance [14, 36], and there are many compression techniques
in the literature; see [36, 35, 27]. In this paper we use the New-PFD
compression method, which was shown to perform well in [35], but
our ideas also apply to other compression techniques.

As the lists for common terms could be very long, we want to be
able to skip most parts of the lists during query processing. To do
so, inverted lists are often split into blocks of, say, 64 or 128 do-
cIDs, such that each block can be decompressed separately. To do
so, we have an extra table, which stores for each block the uncom-
pressed maximum (or minimum) docID and the block size in this
table. The size of this extra table is small compared to the size of
the inverted index. Thus, 64 or 128 postings are grouped together
as a block where we store 64 or 128 compressed docIDs, followed
by the corresponding compressed frequencies.

2.2 Query Processing
Given the inverted index structure mentioned above, the most

basic form of query processing is called Boolean query process-
ing. A query (apple AND orange) OR pear for all documents
containing both words apple and orange, or the word pear, can
be implemented by first intersecting the docIDs in the inverted lists
for apple and orange, and then merging the result with the inverted
list for pear.

Search engines use ranked query processing, where a ranking
function is used to compute a score for each document passing a
simple Boolean filter, and then the k top-scoring documents are
finally returned. This ranking function should be efficiently com-
putable from the information in the inverted lists (i.e., the frequen-
cies and maybe positions) plus a limited amount of other statis-
tics stored outside the inverted index (e.g., document lengths or
global scores such as Pagerank). Many classes of functions similar
to BM25 or Cosine have been studied; see [6] for more details.

Current web search engines use ranking functions based on hun-
dreds of features. Such functions are quite complicated and fairly
little has been published about how to efficiently execute them on
large collections. One "folklore" approach separates ranking into
two phases. In the first phase, a simple and fast ranking function
such as BM25 is used to get, say, the top 100 or 1000 documents.
Then in the second phase a more involved ranking function with
hundreds of features is applied to the top documents returned from
the first phase. As the second phase only examines a small number
of top candidates, a significant amount of the computation time is
still spent on the first phase. In this paper we focus on executing
such a simple first-phase function, say BM25, a problem that has
been extensively studied in the literature.

Recall that ranked query processing consists of a Boolean filter
followed by scoring and ranking the documents that pass this filter.
The most commonly used Boolean filters are conjunctive (AND)

and disjunctive (OR). In general, disjunctive queries have tradition-
ally been used in the IR community while web search engines have
often tried to employ conjunctive queries as much as possible. One
reason is that disjunctive queries tend to be significantly (by about
an order of magnitude for exhaustive query processing) more ex-
pensive than conjunctive queries, as they have to evaluate many
more documents.

To traverse the index structure, there are two basic techniques,
Document-At-A-Time (DAAT) and Term-At-A-Time (TAAT) [32]:
For conjunctive queries, DAAT is often preferred, while many op-
timized approaches for disjunctive queries use TAAT.

2.3 Early Termination Algorithms
As discussed before, one bottleneck in query processing is the

length of the inverted lists. Early termination is one important tech-
nique that addresses this problem. We say that a query processing
algorithm is exhaustive if it fully evaluates all documents that sat-
isfy the Boolean filter condition. Any non-exhaustive algorithm is
considered to use early termination (ET). There are four ways in
which early termination often happens:

• Stop early: In this case, the postings are usually arranged
such that the most promising documents appear early. Then
we stop the traversal of the index as soon as we (may) have
the top-k results. Well-known examples are the TA, FA, and
NRA algorithms of Fagin [21]; see [8] for a highly optimized
implementation of some of these algorithms.

• Skip within lists: When the postings in each list are sorted
by docIDs, the promising documents are spread out through-
out the inverted lists, and thus the standard intuition for "stop
early" does not apply. There are few published works on
early termination techniques under this scenario. An excep-
tion is the WAND algorithm in [11], which uses a smart
pointer movement technique to skip many documents that
would be evaluated by an exhaustive algorithm. More details
are provided further below.

• Omit lists: One or more lists for the query terms are com-
pletely ignored, if they do not affect the final results by much.

• Score only partially: We partially evaluate a document by
computing only some term scores, or by computing approx-
imate scores. When we find that the document cannot be in
the top results, we stop evaluation; an example is [33].

Note that our definition of ET is very general and includes other
techniques such as static pruning [10, 19] and tiering [16]. In this
paper we focus on safe early termination [30], which means we
want exactly the same results as in the naive baseline, i.e., the same
set of documents in the same order with the same scores. We will
ignore other techniques, which try to return search results that are
somehow similar, or of similar quality. Also, we focus on memory-
based indexes, as for example considered in [30, 17], or at least on
the case where disk is not the main bottleneck.

2.4 Index Organizations
Many existing techniques for early termination from the DB and

IR communities are based on the idea of reorganizing the inverted
index such that the most promising documents appear early in the
inverted lists. This can be done by either reordering the postings
in each list, or partitioning the index into several layers or tiers.
In particular, we can distinguish among the following widely used
index organizations:

• Document-Sorted Indexes: This is the standard approach
for basic exhaustive query processing, where the postings in
each inverted list are sorted by document ID.



• Impact-Sorted Indexes: Postings in each list are sorted by
their impact, that is, their contribution to the score of a doc-
ument. Postings with the same impact are sorted by doc-
ument ID. Note that this assumes that the ranking function
is decomposable (i.e., a sum or other simple combination of
per-term scores), which is true for Cosine, BM25, and many
other functions in the literature.

• Impact-Layered Indexes: We partition the postings in each
list into a number of layers, such that all postings in layer i
have a higher impact than those in layer i + 1, and then sort
the postings in each layer by docID.

Impact-sorted and impact-layered indexes are very popular index
organizations for early termination techniques, as they place the
most promising postings close to the start of the lists [25, 21, 3,
4, 8, 30, 23, 32]. A problem with impact-sorted indexes is that
compression could suffer as docID gaps in the inverted lists may
be very large. In this case, an impact-layered index that uses a
small number of appropriately chosen layers may provide a better
alternative. However, impact-sorted indexes are useful when the
number of distinct impact scores is small, or frequencies are used
as proxies for impacts.

In contrast, document-sorted indexes tend to be less studied for
early termination techniques, and only few algorithms use them
(e.g., [11]).

2.5 Index Traversal Techniques
For index traversal, the two most commonly used techniques are:

• Document-At-A-Time (DAAT) : In DAAT query process-
ing, each list has a pointer that points to a "current" posting
in the list. All the pointers move forward in parallel as the
query is being processed.

• Term-At-A-Time (TAAT): In TAAT query processing, we
first access one term, or one layer from one term, and then
move to the next term, or the next layer from the same term
or a different term. We use a temporary data structure to keep
track of currently active top-k candidates.

Note that TAAT requires additional data structures to store promis-
ing candidates seen in some but not all of the lists; this is one of the
main differences to DAAT. In this paper we use TAAT to refer to
any techniques that use nontrivial data structures to keep track of
promising candidates (beyond the simple heap structure used for
the current top-k results), and thus this includes the original Term-
At-A-Time technique [13] as well as Score-At-A-Time in [3].

For conjunctive and exhaustive query execution, DAAT is very
fast and considered state of the art (at least for queries with a mod-
erate number of queries terms), whereas TAAT-type methods are
often bottlenecked by the nontrivial data structures. However, for
disjunctive queries it is hard to integrate early termination and ex-
ploit layered indexes with DAAT. Thus, for this case most early
termination algorithms in the literature are based on TAAT that use
impact-sorted or layered indexes. In this paper we challenge this
assumption and suggest DAAT algorithms may actually do better
for early termination even in the case of disjunctive queries. We
note that DAAT does have a significant advantage by not having
any expensive temporary data structures.

2.6 Two State-of-the-Art Techniques
For disjunctive queries, the fastest existing safe early termination

techniques appear to be the approach by Strohman and Croft (SC)
in [30] (based on earlier work in [3, 2]), and the WAND approach

by Broder et al [11]. Both approaches are safe in that they return
exactly the same top-k results as the baseline in the same order and
with the same score (actually, the original SC algorithm may not
return the same scores, but is easily extended to do so).

The approach by Strohman and Croft (SC) uses impact-sorted
indexes and assumes a ranking function proposed in [3], where all
impacts have one of 8 distinct values; however, it can be extended
to ranking functions such as BM25 using an impact-layered index
organization. The approach then uses a variation of Term-At-A-
Time (TAAT) query processing where we first access the higher
layers of the lists and then move to the lower layers with smaller
impact scores; when we are guaranteed to have a set containing the
top-k results, we will switch from OR mode to AND mode, by only
searching for the docIDs already stored in the structure among the
remaining layers, to find the final correct results. Figure 1 shows
one example of the index layout for SC, with equal-size layers.
Note that the original SC applies a different ranking technique, so
the size of each layer varies. We explore this and find that it does
not make a big difference whether we use variable-size or equal-
size layers; we will explain this further below. In SC, a sorted
array is used to keep track of candidate documents that have been
seen in some but not all term lists. After processing each layer, an
extra phase is used to "filter out" candidates that can not make into
the top-k. Thus, this approach requires temporary data structures
(arrays) to keep track of promising candidates.

The WAND approach, on the other hand, uses a standard document-
sorted index, and can thus employ a Document-At-A-Time (DAAT)
approach that does not require additional temporary data structures
(apart from the small top-k heap used by all methods). The down-
side is that the promising documents are spread out throughout the
inverted lists, and thus the standard intuition for early termination
does not apply. Instead, WAND uses an ingenious pointer move-
ment strategy based on pivoting that allows it to skip many docu-
ments that would be evaluated by an exhaustive algorithm. More
precisely, in DAAT query processing each list has a pointer that
points to a "current" posting in the list, and that moves forward
as the query is being processed. Thus any posting to the left of
the pointers have already been processed. Throughout the algo-
rithm, WAND keeps the terms sorted in increasing order by their
current docIDs. Assume that at some point during a query "dog,
cat, kangaroo, monkey", the current docIDs are 609, 273, 9007,
and 4866, respectively, as shown in Figure 2, where the lists are
arranged from top to bottom according to these docIDs. Suppose
also that we know the maximum impact score for each list, and that
a total document score of at least 6.8 (the threshold) is needed in
order to make it into the current top-k results. We now sum up the
maximum scores of the lists from top to bottom until we reach a
score no smaller than 6.8. In Figure 2, this happens at the third list
from the top (2.3 + 1.8 + 3.3 > 6.8). We can now claim that the
smallest docID that can make it into the top-k is 4866. Thus, we can
move the top two pointers forward to the first postings in their lists
with docIDs at least 4866, enabling skipping in these lists. If docID
4866 appears in both the first two lists then we evaluate this docID.
Otherwise, we sort the lists according to the current docIDs and
pivot again. Thus, WAND achieves early termination by enabling
skips over postings that cannot make into the top results. For the
threshold value, we use the lowest score in the heap that contains
the top-k results found thusfar. Note that WAND also stores one
maximum impact score for each list, which could be kept in the
term dictionary of the index.

These two methods are different in interesting ways – index or-
ganization and index traversal choices: WAND uses a document-
sorted index and DAAT as index traversal technique, whereas SC



uses an impact-ordered or layered index and TAAT, using an addi-
tional data structure to keep the candidates. For disjunctive queries
SC seems to outperform WAND, although the numbers for SC that
we report are not as fast as those in [30], due to our use of BM25 as
the ranking function and due to us keeping stopwords and remov-
ing 1-term queries. WAND is of interest to us as it will form the
basis of our improved approaches.

Figure 1: The index layout for SC. The layers are processed in de-
scending order by their maximum impact scores. Inside each layer,
postings are sorted by docIDs.

Figure 2: A scenario during the processing of a 4-term query, where
the current pointers point to docIDs 273, 609, 4866, and 9007. WAND
selects the third list as a pivot, and moves earlier pointers to docID
4866. Then all lists are sorted again according to their current docIDs.

3. OUR CONTRIBUTION
In this paper, we propose new early termination algorithms by

building on the WAND approach [11]. Recall that WAND stores
the maximum impact for each inverted list. Our initial insight is that
skipping in WAND is limited because it uses the maximum impact
scores over the entire lists, which can be much larger than average.
Recall that we have an extra table to store information allowing
us to skip blocks. We propose to augment the index structure by
also storing in this table the maximum impact value for each block.
We call such an index a Block-Max Index. In this way, we get a
piece-wise upper-bound approximation of the impact scores in the
lists, as shown in Figure 3. This approximation hides the detailed
scores, shown in Figure 3 for one block in the kangaroo list, which
can only be obtained by decompressing the block. This idea is very
simple and easy to implement. As we will see later, this gives many
optimization opportunities and leads to large performance gains.

After this slight change to the index structure, resulting in only a
small increase in index size, we have to adapt the WAND algorithm
to work with it. One obvious idea is to just use the local maximum
value for the current block, instead of the global one, in the pivoting
phase. Unfortunately, this does not guarantee correctness. To see
this, let us look at the example in Figure 4. Looking only at the
max scores for the blocks containing the current pointers (i.e., score

Figure 3: Three inverted lists where lists are piecewise upper-bounded
by the maximum scores in each block. As shown for one block in the
bottom list, inside each block we have various values, including many
(implied) zero values, that can be retrieved by decompressing the block.

Figure 4: An example showing why directly using block max scores
does not work.

2.3 for the first list, and so on), we cannot conclude that 4866 is
the smallest docID that can make into it the top-k, because it is
possible that the next block after docID 273 in the first list (but with
docIDs smaller than 4866) has a much higher maximum impact
score. Thus, directly applying the local max value does not work.
We will describe how to modify the algorithm in later sections.

Overall, we make the following main contributions in this paper:

1. We propose a modified index structure, the Block-Max In-
dex, which only slightly increases the index size. We then
study improved techniques for safe early termination based
on this index structure and the WAND approach in [11].

2. We show how to extend our techniques to layered indexes,
reordered indexes, and conjunctive query processing.

3. We evaluate our techniques on the TREC GOV2 collection of
25.2 million documents, and demonstrate considerable im-
provements compared to the state-of-the-art techniques.

4. We discuss some interesting open questions resulting from
our work.

4. RELATED WORK
Previous work on early termination (ET) techniques can be di-

vided into two fairly disjoint sets of literature. In the IR commu-
nity, researchers have studied ET techniques for the fast evaluation
of vector space queries since the 1980s; some early work appears
in [13, 32, 33]. There have been a large number of papers in recent
years. Most relevant to us, several recent papers have focused on
how to use impact-sorted indexes [2, 3, 30] for early termination,
resulting in highly efficient methods for disjunctive queries.



There has also been a lot of work on early termination in the
database community; see [21] for a survey and [20] for a formal
analysis. Stated in IR terms, the algorithms also assume that post-
ings in the inverted lists are sorted by their contributions and ac-
cessed in sorted order. However, the application scenarios are some-
what different, and many (but not all) of the algorithms assume that
once a document is found in one inverted list, we can efficiently
evaluate it by performing lookups into the other inverted lists. Such
random lookups are highly undesirable in most IR scenarios.

Early termination techniques also differ in terms of their assump-
tions about result quality. We can distinguish between safe (or reli-
able) early termination techniques that return exactly the same top-
k results as the baseline [30, 20], techniques that return mostly the
same results, and those that just return results of equivalent quality,
as determined by suitable IR measures. We focus on safe early ter-
mination of disjunctive queries, where the most relevant previous
techniques are the approach of Strohman and Croft [30] and the
WAND approach of Broder et al. in [11].

Two other recent ideas in IR query processing are also relevant
to our work. First, a number of recent papers show how to decrease
inverted index size and query processing costs by optimizing the
assignment of docIDs to the documents in the collection [26, 9].
Intuitively, if we assign consecutive docIDs to very similar pages,
for example by sorting pages by URL [28] or clustering by textual
similarity, we obtain runs of small docIDs gaps that allow better
index compression with suitable techniques. Moreover, as shown
in [35], reordering significantly increases the speed of conjunctive
queries. Our work here shows that, somewhat surprising to us, re-
ordering can help even more for disjunctive queries.

The second relevant idea is that of two-level indexes proposed
in [1]. The idea is to cluster documents by similarity and then in
the first level only index the clusters (i.e., whether a cluster con-
tains a term), while the second level says which documents in the
cluster actually contain the term. Thus the first level basically ap-
proximates the overall index, similar to the way in which we use
the maximum impact scores in each block to approximate the dis-
tribution of impact scores in a list.

Finally, we note that very recently, and independent of our work,
Kaushik et al [15] have proposed an index structure very simi-
lar to the Block-Max Index in this paper, which also stores max-
imum impact information for blocks. Their algorithm for disjunc-
tive queries first performs preprocessing to split blocks into inter-
vals with aligned boundaries and to discard intervals that cannot
contain any top results. Then a version of the maxScore technique
[32] is applied to the remaining intervals. While their and our al-
gorithms are different, they both achieve significant performance
improvements based on similar underlying ideas.

5. BLOCK-MAX WAND ALGORITHM
In this section we give our basic algorithm, Block-Max WAND

(BMW), which is an extension of WAND to our Block-Max Index.

5.1 The Basic Idea
As described in Section 2, naively using the maximum impact

score for each block in the "pivoting" phase will not work, and
thus we need to add some additional ideas. In the traditional DAAT
query processing, one core function is called Next(d,list(i)) or Next-
GEQ(d, list(i)) [11]; this function receives a docID d and an in-
verted list list(i) as inputs and returns the first docID after the cur-
rent docID in list(i) that is equal to or greater than d. The call to this
particular function usually involves a decompression of one block
in list(i). We call this a deep pointer movement due to the rea-
son that it usually involves a block decompression. As we have

the max score for each block, we design another function called
NextShallow(d,list(i)) which only moves the current pointer to the
corresponding block without decompression (using d and informa-
tion about the block boundaries in the table). We call this a shallow
pointer movement. We use two main ideas in our modified algo-
rithm: (i) we use the global maximum scores to determine a candi-
date pivot, as in WAND, but then use the block maximum scores to
check if the candidate pivot is a real pivot, and (ii) we use shallow
instead of deep pointer movements whenever possible.

5.2 The Algorithm
The detailed algorithm is shown in Algorithm 1, and we refer to

it as Block-Max WAND (BMW). Note that in BMW we still also
keep the maximum score for the whole list as in WAND.

Initialize();
repeat

/* sort the lists by current docIDs */
Sort(lists);
/* same "pivoting" as in WAND using the max
impact for the whole lists, use p to denote
the pivot */
p = Pivoting(lists, θ);
d = lists[p] → curDoc;
if (d == MAXDOC) then

break;
end
for i = 0 . . . p+ 1 do

NextShallow(d, list(i));
end
flag = CheckBlockMax(θ, p);
if (flag == true) then

if ( lists[0] → curDoc == d ) then
EvaluatePartial(d , p);
Move all pointers from lists[0] to lists[p] by calling
Next(list, d+ 1)

end
else

Choose one list from the lists before lists[p] with the
largest IDF, move it by calling Next(list, d+ 1)

end
end
else

d′ = GetNewCandidate();
Choose one list from the lists before and including lists[p]
with the largest IDF, move it by calling Next(list, d′)

end
until Stop;

Algorithm 1: Block-Max WAND for disjunctive query processing
based on local max values.

As shown in Algorithm 1, the main difference compared with
WAND is that before we evaluate one docID, we will first move
shallow pointers to check if we indeed have to evaluate this docID
or not, based on the maximum scores for blocks. By doing this
we filter out most of the candidates and achieve much faster query
processing. Also, when the check fails, we can skip further forward
using GetNewCandidate(), as described later in detail.

The two functions used in Algorithm 1, NextShallow() and Check-
BlockMax(), are listed in Algorithm 2 and Algorithm 3. They are
fairly obvious from the context. In EvaluatePartial(), we eval-
uate the document by summing up the scores from list[0] until
list[pivot+1]. As soon as we find that the document can not make
it into the top results, we stop the evaluation.

Another important improvement happens when CheckBlockMax()
returns false, which means the current document d can not make it
into the top results. Instead of picking one list (usually the one
with the largest IDF) and moving it forward to at least d + 1, we



Figure 5: An example showing how GetNewCandidate() works. As-
sume 266 is the pivot and it fails to make it into the top results. In this
case, we enable better skipping by choosing min(d1, d2, d3, d4) as the
next possible candidate, instead of 266 + 1

will use the d′ returned by GetNewCandidate(). The reason is that
since the current document was ruled out based on the block max-
ima, we should skip at least beyond the end of one of the current
blocks. This idea behind GetNewCandidate() is shown in Figure 5.
Assume docID 266 is the pivot; when it fails the CheckBlockMax()
check, instead of moving one of the first three lists to 266 + 1, we
will move it to d′ = min(d1, d2, d3, d4) where d1, d2, d3 are the
block boundaries plus one of the first three lists, and d4 is the cur-
rent docID in the forth list (equal to 1807 in this case). By doing
this, skipping is greatly improved compared to using d + 1, while
still guaranteeing a safe result. The proof should be obvious.

while did > list− > blockboundary[current_block] do
current_block ++;

end
Algorithm 2: NextShallow(list, did)

maxposs = 0.0f ;
for i = 0 . . . pivot+ 1 do

maxposs+ = list[i]− > blockmax[current_block];
end
if ( maxposs > threshold ) then

return true;
end
else

return false;
end

Algorithm 3: CheckBlockMax(threshold, pivot)

6. EXPERIMENTS
In this section, we provide a first set of experimental results.

6.1 Experimental Setup
We evaluate our methods on the TREC GOV2 collection. The

GOV2 collection consists of 25.2 million web pages crawled from
the gov Internet domain. The uncompressed size of these web
pages is 426GB. We compress the inverted index using the New-
PFD version of PForDelta as described in [35], with 64 docIDs
and frequencies in each block.(We also tried other block sizes, but
this one gave the best results.) The compressed index consumes
8759MB and the extra information for the Max-Block Index (the
maximum score for each block) adds about 400MB (using 32 bits
for each score though this could be reduced).

We randomly picked 1000 queries from the TREC 2006 Effi-
ciency queries, and 1000 queries from the TREC 2005 Efficiency

Figure 6: Processing time in ms for different number of layers in SC.

queries as our testing sets. The average numbers of postings per
query are 4.67M and 6.07M using 2006 and 2005 set, respectively.
We use BM25 as our ranking function. In all our runs, we load the
inverted index completely into main memory. Unless stated other-
wise, we return top-10 results. Runs are performed on a single core
of a 2.27GHz Intel(R) Xeon CPU. All the codes are available by
contacting the first author.

6.2 Results
In this section we compare our algorithm BMW with exhaus-

tive OR (using DAAT), WAND, and SC on disjunctive queries. We
measure the performance by three criteria – time (average time per
query in ms), decoded integers per query and evaluated docIDs (do-
cIDs that are completely scored against all query terms) per query.
These criteria are also used in previous work [30, 11].

We reimplemented the SC algorithm based on the code available
at http://repo.or.cz/w/galago.git, with BM25 as the ranking func-
tion. The original SC has four phases–OR, AND, Refine, and Ig-
nore. In this paper we focus on getting safe results; thus we do not
have an Ignore phase in our implementation (as we need the exact
scores). Most of the time is spend in the OR phase, so this does not
change the query processing time by much.

We partitioned each list into 8 equal-sized layers. Note that in
the original SC algorithm in [30], a different ranking function was
used that has only 8 distinct impact scores, with each layer dealing
with one score, and thus the layers were of different sizes. We also
tried different combinations of variable-sized layers We found that
equal-sized layers usually did at least as well as the other heuristics,
though in principle there is still room for better approaches. Our ex-
planation is that in SC, there is a "switching point", where we are
guaranteed to have encountered the docIDs of all the corrects top-k
results in at least one list. At this point, we can switch from OR
mode (TAAT) to AND mode before starting the next layer. Most
of the computation time in SC is spend in OR mode, and things be-
come much faster afterwards. While this "switching point" depends
on how we partition the lists into layers, the switching point cannot
happen before the point where the threshold condition is satisfied
in the well-known TA algorithm of Fagin. The optimal partitioning
would make a cut right after the threshold condition is satisfied for
a query, but since this depends on the query one good choice is to
spread out cuts evenly over the lists so that the next cut is never far
away.

We also experimented with different numbers of layers. Figure 6
shows SC performance for different numbers of layers for equal-
size layers, justifying the use of 8 layers.

Table 1 shows the query processing time using different algo-
rithms. All runs in this paper exclude single-term queries, and no
stopwords were removed (changing these assumptions would result
in even better times). We observe that for TREC 2006, the effect
of removing single-term queries is small, while for TREC 2005
the difference is significant as there are many such queries in the



TREC 2006
avg 2 3 4 5 > 5

exhaustive OR 225.7 60 159.2 261.4 376 646.4
WAND 77.6 23.0 42.5 89.9 141.2 251.6

SC 64.3 12.2 36.7 75.6 117.2 226.3
BMW 27.9 4.07 11.52 33.6 54.5 114.2

exhaustive AND 11.4 10.3 10.8 14.0 15.4 15.2
TREC 2005

avg 2 3 4 5 > 5
exhaustive OR 369.3 62.1 238.9 515.2 778.3 1501.4

WAND 64.4 23.5 43.7 73.4 98.9 265.9
SC 63.5 14.2 37.5 119.7 172.9 316.9

BMW 21.2 3.5 12.7 25.2 39 104
exhaustive AND 6.86 6.4 7.3 9.2 4.7 5.9

Table 1: Average query processing time in ms for different numbers
of query terms, using different algorithms on the TREC 2006 and 2005
query logs. Exhaustive OR, WAND, SC, and BMW are for disjunctive
queries, while Exhaustive AND is for conjunctive queries.

log. (But note that most single-term queries are resolved by result
caching in real search engines.)

From Table 1 we can see that our BMW algorithm improves
query processing performance. This is mainly due to the superi-
ority of the DAAT index traversal over TAAT and the large amount
of skipping. Also, our implementation for SC is not as fast as the
numbers reported in [30], especially on TREC 2005 query log. This
is because we remove single-term queries but do not remove stop-
words as in [30], and also due to the use of BM25 as our ranking
function. Still, SC outperforms basic WAND, as also reported in
previous work. Overall, our basic BMW algorithm achieves much
faster query processing but is still much slower than exhaustive
AND using standard DAAT.

Table 2 shows the other two criteria for different methods on the
TREC 2006 query log (we omit the 2005 data due to space con-
straints). We also include the number of deep pointer movements
and shallow pointer movements. As these measures are only mean-
ingful for DAAT index traversal, we ignore the numbers for SC
which uses TAAT traversal. Note that we did not include numbers
for SC for evaluated docIDs, mainly because SC adopts TAAT-like
query processing and the definition of evaluated docIDs will be
misleading. Also, in BMW each partial evaluation is counted as
an evaluated docID, no matter whether it stops early or not.

From Table 2, we see that all techniques improve greatly over
exhaustive OR. WAND only evaluates 4.6% of the docIDs com-
pared to exhaustive OR, which approximately matches the numbers
in [11]. BMW evaluates even fewer docIDs. This means that BMW
should perform even better when we have a more expensive scoring
function than BM25, such as the one mentioned in [11]. Another
interesting point is that SC decodes less integers compared with
the fastest method, BMW, which means that assigning promising
docIDs to the first layers does help a lot. However, SC uses an
additional data structure to temporarily store candidates, and this is
the main drawback for SC and many other TAAT-based techniques.

6.3 Document ID Reassignment
In this section we show results after document ID reassignment.

The idea for document ID reassignment is to assign docIDs to docu-
ments so that similar pages have close IDs. This idea is extensively
explored in [28, 35, 18] and it is shown that after the reassignment,
both compressed index size and query processing speed under ex-
haustive AND are significantly improved.

One natural question is whether reassignment can also help pro-

evaluated docs decoded ints dpm spm
exhaustive OR 3815676 9356032 15.9M –

WAND 178391 6274432 1.18M –
SC – 965248 – –

BMW 21921 2642752 0.42M 0.76M
exhaustive AND 20026 1939584 0.25M –

Table 2: The average number of evaluated docIDs, decoded integers,
deep pointer movements (dpm), and shallow pointer movements (spm)
for different methods on the TREC 2006 query log. Exhaustive OR,
WAND, SC, and BMW are for disjunctive queries, while Exhaustive
AND is for conjunctive queries.

TREC 2006
avg 2 3 4 5 > 5

exhaustive OR 210.6 55.3 156.6 245.9 354.2 583.9
WAND 50.1 17.2 28.7 57.5 94.9 168.9

SC 69.3 14.1 40 80.9 126.7 239.9
BMW 8.89 1.4 3.6 10.2 16.9 37.8

exhaustive AND 6.56 5.5 5.3 7.1 10.8 8.4
TREC 2005

avg 2 3 4 5 > 5
exhaustive OR 349.7 56.4 226 495.8 743.1 1411.9

WAND 42.4 18.1 29.4 47.4 64.5 163.3
SC 76.4 12.6 52.9 112.2 162.8 288.9

BMW 7.2 1.3 3.7 8.9 13.5 35.8
exhaustive AND 4.5 4.3 4.7 5.9 2.7 4.1

Table 3: Average query processing times in ms for different numbers
of query terms after docID reassignment, on the TREC 2006 and 2005
query logs.

cessing speeds for disjunctive query processing. For exhaustive
OR, the intuition is that the improvement should be tiny because
we fully evaluate the documents in all the lists anyway, no mat-
ter how the docIDs are assigned. For SC, the improvement should
also be modest because in SC we will assign the postings such that
the postings with higher impact scores appear earlier in the list.
However, for WAND and BMW, reassignment of docIDs might
give some benefits, as the distribution of impact values within each
block should become more even, helping both WAND and BMW.

Table 3 shows the query processing times for the different tech-
niques after docID reassignment. In particular, we assign docIDs
according to the alphabetical ordering used in [28, 35]. From the ta-
ble, we see that query processing performance is greatly improved
for WAND and especially for BMW. In fact, the gaps between dis-
junctive and conjunctive queries are significantly narrowed. This
means that reassignment succeeds in making the scores inside the
blocks block much smoother, thus improving skipping.

Query processing performance is also slightly improved for ex-
haustive OR. This is mainly because reassignment reduces the com-
pressed size of the inverted index, thus reducing the cost of main
memory accesses; see also [14] for more discussion of this issue.

Table 4 shows the corresponding results for evaluated docIDs
and decoded integers on the TREC 2006 query log. We observe
similar trends as in the query processing time, with significant re-
ductions for WAND and BMW.

7. EXTENSIONS
In this section we give some extensions to our BMW algorithm.

7.1 A Layered Version of BMW
As shown in previous section, BMW achieved the best query

processing performance for disjunctive queries, and significantly



evaluated docs decoded ints dpm spm
exhaustive OR 3815676 9356032 15.9M –

WAND 221926 3472704 0.74M –
SC – 715776 – –

BMW 9308 1181760 0.126M 0.22M
exhaustive AND 20026 951744 0.10M –

Table 4: The average number of evaluated docIDs, average decoded
integers, deep pointer movements (dpm), and shallow pointer move-
ments (spm) for different methods, after docID reassignment on the
TREC 2006 query log.

narrowed the performance gap between disjunctive and conjunctive
queries. The main advantage for BMW seems to be that it uses
DAAT index traversal, and thus does not have to use an expensive
data structure to keep track of promising candidate documents.

On the other hand, SC achieves pretty good early termination
performance (note from the previous section that SC actually de-
codes fewer integers than the other algorithms), by using an impact-
layered index and assigning the most promising documents to the
first layers. This means that the intuition for SC, putting top-scoring
documents early in the lists to stop early, does have a lot of merit.
A natural question is if we can combine this idea of a layered in-
dex with our BMW algorithm and its DAAT traversal mechanism.
We now show how to do this. Our basic algorithm is very simple:
For each inverted list, we split it into N layers. Then we treat each
layer just as a separate term. In this case we directly apply the
BMW algorithm on the impact-layered index.

The intuition behind this idea is that after we pick out the top-
scoring documents from each list, the scores for the remaining do-
cIDs are much smoother. So when we store the maximum impact
score for each block, it is less likely that this score will be much
larger than the others in the block. It’s not difficult to understand
that such spiky values are bad for BMW: If two two spikes are in
two separate blocks, we probably have to decode both blocks, but
if they are in one block we may only need to decode and access
that one block. have to decode the two blocks. We call the new
algorithm N-layer BMW where N is the number of layers. The
disadvantage of doing this is that we will have a larger number of
terms for each query. To minimize this disadvantage, we only split
each list into 2 layers, a fancy layer and a normal layer, and each
list is split only when it has more than α postings. We put the
top-scoring β postings in each list into the fancy layer. After some
experiments, we set α = 50K and β = 2%, which seems to work
well (getting the best possible parameters is left for future work).

Thus, in our 2-layer BMW, we just treat the layers from one list
as separate lists, and the different layers from the same list do not
know the existence of each other. We also design a version where
the layers from the same list know the existence of the others. The
observation is that one document ID can only exist in one, if any,
of the layers from the same list. In this case, in the "pivoting"
phase of the BMW algorithm, we can do better by choosing the
maximum score of the layers from the same list (instead of the sum
of the scores). We experimented with this idea and found that it
moderately decreases pointer movements and decoded integers, but
not the actual running time, due to the overhead of tracking layers
belonging to the same term during pivoting. For space reason we
omit the results of these experiments, though future work may lead
to more practical variants based on this idea.

Table 5 shows the query processing performance for 2-layer BMW
without and with docID reassignment. As we can see, 2-layer
BMW obtains improved running times over basic BMW. We also

before reassignment time (ms) evaluated docs decoded ints
BMW 27.9 21921 2642752

2-layer BMW 22.9 7435 1731264
after reassignment time (ms) evaluated docs decoded ints

BMW 8.89 9308 1181760
2-layer BMW 7.4 4196 790464

Table 5: Query processing performance after combining layered index
and BMW, before and after docID reassignment, on the TREC 2006
query log. All numbers are averaged per query.

before reassignment avg 2 3 4 5 > 5
BMW 27.9 4.07 11.52 33.6 54.5 114.2

2-layer BMW 22.9 2.9 10 30.8 46.3 98.2
after reassignment avg 2 3 4 5 > 5

BMW 8.89 1.4 3.6 10.2 16.9 37.8
2-layer BMW 7.4 1.1 3.3 8.5 15.0 31.4

Table 6: Average query processing time in ms for different number
of query terms for BMW and 2-layer BMW, before and after docID
reassignment, on the TREC 2006 query log.

show the query processing time for queries with different numbers
of terms in Table 6.

7.2 Increasing Top-k
As mentioned, one commonly used ranking technique in current

web search engines is based on a two-phase approach, where we
first get the, say, top-1000 documents according to a simple ranking
function such as BM25, and then compute the exact score accord-
ing to a more complicated ranking function only for these 1000.
An example appears in [34] for a ranking function that uses posi-
tion information in addition to BM25. Of course, in these scenarios
we usually need much larger values of k than k = 10, e.g., a few
hundred or few thousand results.

In Figure 7 we show the performance as we increase k, with
reassigned docIDs. We find that the performance for the naive ex-
haustive OR algorithm is quite stable as it decodes and evaluates
all the postings anyway. For other algorithms, the query processing
time increases. For SC, we observe a huge performance degrada-
tion. This is mainly because the performance of the temporal data
structure degrades more and more as we store more candidates. We
also see that BMW and 2-layer BMW perform quite well even when
k is equal to 1000, and that the increase in time is fairly moderate.

Figure 7: Query processing times for different techniques with docID
reassignment, on the TREC 2006 query log. The X-axis is the value for
k, while the Y-axis is the average processing time.



7.3 Block-Max AND
One advantage of BMW is that the idea can also be applied to

conjunctive query processing using standard DAAT index traver-
sal. For conjunctive query processing, standard AND starts from
the shortest list, and then tries to find the corresponding docID in
the longer lists. It is a natural extension to integrate the Block-Max
Index structure and add shallow pointers in DAAT for conjunctive
query processing. The improved DAAT algorithm is shown in Al-
gorithm 4; it is called Block-Max AND (BMA).

Sort the lists from shortest to longest;
d = 0;
repeat

d = NextGEQ(list[0], d);
for i = 1 . . . n do

NextShallow(d, list(i));
end
flag = CheckBlockMax(θ, n);
if flag == true then

search d in the rest lists, if found evaluate, otherwise
d = d+ 1

end
else

d = GetNewCandidate();
continue;

end
until Stop;

Algorithm 4: Block-Max AND for conjunctive queries with n terms.

As we see we only have to slightly adapt the standard AND algo-
rithm to get the BMA algorithm. In particular, we use three routines
from BMW – NextShallow(), CheckBlockMax() and GetNewCan-
didate(). The processing cost for BMA is shown in Table 7. We ob-
serve that the BMA works better for queries with smaller numbers
of terms (otherwise the shallow pointer movements will become
expensive). So we also propose one hybrid algorithm: Apply BMA
when the number of terms in the query is less than T ; otherwise
use exhaustive AND. We use T = 4 in this paper.

Table 8 shows the performance using BMA and the hybrid BMA,
before and after docID reassignment. We can see significant im-
provements over an exhaustive AND. Note that BMW and BMA
algorithms use the same index structure; thus the Block-Max Index
can support both types of queries.

8. OPEN QUESTIONS
Our results in this paper raise several interesting open questions.
A Cleaner Algorithm and Analysis: While the described meth-

ods already achieve large benefits, we are not yet convinced that we
have really found the optimal algorithm. It would also be interest-
ing to provide some analysis, say of the optimal number of pointer
movements and document evaluations under our approach.

Other Applications of Block-Max Indexes: The basic idea be-
hind our augmented index structure could also be applied to other

before reassignment avg 2 3 4 5 > 5
exhaustive AND 11.4 10.8 10 12.5 11.57 9.94

BMA 9.89 3.96 7.92 13.2 14.08 14.63
after reassignment avg 2 3 4 5 > 5

exhaustive AND 6.56 6.93 6.11 7.06 6.84 5.57
BMA 5.12 1.69 4.02 7.03 7.33 9.06

Table 7: Average query processing times in ms for different numbers
of query terms, using exhaustive AND and BMA, before and after do-
cID reassignment, on TREC 2006.

before reassignment time evaluated docs decoded ints
exhaustive AND 11.4 20026 1939584

BMA 9.89 5725 1460992
Hybrid 9.4 6594 1568704

after reassignment time evaluated docs decoded ints
exhaustive AND 6.56 20026 951744

BMA 5.12 3108 607680
Hybrid 4.53 3673 641344

Table 8: Average query processing times in ms, numbers of evaluated
docIDs per query and average decoded integers per query for conjunc-
tive queries, before and after docID reassignment, on TREC 2006.

no reassignment with reassignment
BMW 27.9 8.89

Clairvoyant BMW 23.0 7.2

Table 9: Average query processing times in ms for BMW versus Clair-
voyant BMW, for top-10 results, on the Trec 2006 query log.

scenarios. For example, it would be natural to try to integrate local
maximum scores into the two-level index structure in [1].

Estimating Top-k Thresholds: Our methods could be further
improved if we somehow had a good a-priori estimate of what score
is needed to make it into the top k results. Currently, we start with
a threshold of zero, and then update the value as results are dis-
covered. Thus, the algorithm starts slow and then speeds up. This
motivates the following algorithmic problem that also has other ap-
plications, for example in distributed IR: Given an inverted index, a
query, and a number k, how do we quickly estimate the score of the
k-th best result (possibly using some small auxiliary structures), or
conversely, given a threshold t how do we estimate the number of
results with score higher than t.

For motivation, we show in Table 9 that a clairvoyant algorithm
that knows the score of the k-th best result would get a circa 20%
reduction in query processing costs.

Query Processing with Score Approximations: Another inter-
esting more general question is how to best approximate the im-
pact scores in inverted lists, and how to best use such approxima-
tions during query processing. Consider the scenario in Figure 3,
where we have a long, sparse, array of impact values that is upper-
bounded by some block-wise approximation. What is the best ap-
proximation for a given array of values? Does it make sense to
have a multi-level structure (similar to wavelet trees) that provides
upper bounds for progressively smaller block sizes as we descend
to lower levels? Are there statistical measures other than the maxi-
mum impact, say the skew of the values, that are useful?

9. CONCLUSION
In this paper, we have described and evaluated improved safe

early termination for disjunctive queries. This was achieved by an
augmented index structure called a Block-Max Index, which stores
maximum impacts for blocks of postings. We then showed how to
integrate this structure into the WAND approach. Finally, we ex-
tended it to the impact-layered indexes, indexes with reassigned do-
cIDs, and conjunctive queries, leading to additional improvements.
Our results also lead to a number of interesting opportunities for
future research, as discussed in Section 8.
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