
COMPARISON OF ALGORITHMS FOR THE

HAPLOTYPE ASSEMBLY PROBLEM

Ömer Nebil Yaveroğlu

Computer Engineering Department, Middle East Technical University

email: nebil@ceng.metu.edu.tr

ABSTRACT

Haplotype Assembly Problem aims to construct the two hap-

lotypes (chromosomes) given a collection of erroneous hap-

lotype fragments. The error in the fragments is assumed to

be Single Nucleotide Polymorphism (SNP). There is no li-

mitation on the length of the fragments. Also they contain an

arbitrary number of gaps. The problem of haplotype assem-

bly problem is proven to be NP-Hard. In this paper, a com-

parison of three approximation algorithms on haplotype

assembly problem is studied. These algorithms are HASH

[1], Fast HARE [2] and HapCUT [3]. Among them HapCUT

is the best algorithm by means of approximation accuracy

and speed. The computational complexity of the approx-

imate solution is calculated to be O (log n).

1. PROBLEM DEFINITION

Human are diploid organisms (2n). A human DNA sequence

consists of two chromosomes which are complements of

each other. Identification of the chromosome (haplotype)

sequences of species is an important task in bioinformatics

since it is possible to understand the genetic basis of diseas-

es and metabolic processes with the use of this information.

These sequences have an amount of genetic variability. The

variability is a result of single nucleotide polymorphism

(SNP‟s) most of the time. SNP is a single change of charac-

ter in a nucleotide as a result of genetic mutation.

The current technologies for haplotype sequencing do not

allow sequencing of all the nucleotides in only one experi-

ment. SNP chips can interrogate up to a million of SNP‟s in

an experiment. This value is not enough to identify the whole

haplotype sequence of human and many other organisms. So

the solution for the current technology is to partition the hap-

lotype sequences into fragments. The fragmentation process

is performed by the usage of some chemicals which breaks

certain bonds in the haplotype sequence. So after the chemi-

cal separation process, a collection of haplotype fragments

with no information about which strand it comes from. Also

the number of fragments showing the same location and the

location of the breaks are not known.

Another problem is that the reading processes of these frag-

ments are erroneous. Some parts of the fragments cannot be

read. Some read parts may be wrong. Considering all these

problems all together for haplotype assemblies the aim is to

find the full sequences of the two complementary haplotypes

from a collection of fragments.

It is proven that the haplotype assembly problem is NP-Hard

[2].Because of the NP-Hardness of the problem, it is not

possible to find a deterministic or non-deterministic poly-

nomial time solution to the problem. As a result of this, there

exists a number of approximation algorithms proposed to

find an approximate solution to the problem. HASH, Fast

HARE and HapCUT are three well-known algorithms for the

haplotype assembly problem. This paper compares these

three methods by means of performance, complexity and

accuracy.

2. DATASETS USED

Since human chromosome is not fully sequenced without

any errors, there does not exist a ready to use dataset for

applying methods. For this reason, the authors of the three

algorithms have used the following methods to produce the

data to work on.

Panconesi et al. [2] produces an artificial dataset using rea-

listic assumptions. They generate a sequence of 100 charac-

ters for using as the first haplotype. Then the complement of

this sequence is taken to use as the second haplotype. While

taking the complement, some of the characters are not

flipped with a given probability to simulate the errors in the

dataset. Then the constructed samples are broken uniformly

at random locations in order to generate fragments from the

dataset. They claim that the only non-realistic thing about

this fragment generation method is that the breaking of

fragments is not performed with the same probability eve-

rywhere on a real DNA sequence. Although they generate

this dataset synthetically, they claim that their method, Fast

HARE, is applicable in all types of realistic data.

Bansal et al. [1,3] takes the haplotypes inferred in the Hap-

MAP project. HapMAP haplotypes are proven to be invalu-

able for whole-genome association studies. On the other

hand they have taken the HuRef haplotype as the reference

haplotype which they aim to find. For constructing HuRef

haplotype, 32 million sequenced reads have been used to

generate the whole human haplotype.

3. NP-HARDNESS OF PROBLEM

There exists a short proof of NP-Hardness of Haplotype

Assembly Problem in Panconesi et al.‟s paper [2]. They try

to solve the haplotype assembly problem by a method using

minimum fragment removal. If there are no errors in reads

then the matrix constructed to process the fragment dataset

is bipartite. Minimum fragment removal method tries to find

out a bipartite matrix by removing minimum number of

rows from the fragmentation matrix. Then with the introduc-

tion of gaps, they convert minimum fragment removal to

minimum element removal problem. Minimum element

removal method tries to change minimum number of non-

null entries in the fragmentation matrix to make this matrix

bipartite.

After converting the haplotype assembly problem to mini-

mum element removal problem, it can be proven that the

haplotype assembly problem is NP-Hard. The proof NP-

Completeness of minimum element removal problem can be

done by reducing the minimum element removal to Hyber-

cube Segmentation Problem. A detailed proof NP-Hardness

of minimum element removal algorithm can be found in [4].

Also it can be shown that the minimum element removal

algorithm is O (log n).

4. METHODS AND ALGORITHMS

The three approximation algorithms used for haplotype as-

sembly problem has some common parts, especially for the

construction of fragmentation matrix. These parts are dis-

cussed in part 2.1 and the differing parts of the algorithms

are mentioned in 2.2, 2.3 and 2.4.

2.1 Common Points Of Three Methods

In all of the three methods, instead of dealing with the whole

haplotype, the algorithms focus on the SNP locations. For

this aim the authors extract the SNP‟s and form fragment

matrices by using these extracted SNP‟s. An illustration of

the construction of the haplotype assembly can be seen from

Figure 1.

Figure 1: Selection of SNP’s from haplotypes and con-

struction of the haplotype assembly from haplotypes

Given a collection of haplotype fragments, an alignment is

made according to a reference haplotype. Then the haplotype

assembly is formed by taking the differing nucleotides of the

alignment which correspond to SNP‟s.

The fragment matrix to work on is constructed by combining

the SNP fragments putting the fragments to the rows of data.

When this is the case, the columns of the SNP-fragment ma-

trix correspond to SNP‟s. For simplicity, the characters form-

ing the sequences are converted to 0‟s and 1‟s depending on

the differing of the SNP‟s. Also for the non-determined seg-

ments „-„ character is used to represent that the sequence in-

formation is not provided by the fragment. As a result, the

fragment matrix is an m x n matrix where m is the number of

fragments available and n is the number of SNP locations.

Each cell in this matrix is an element of {0, 1, -}.

After the construction of this fragment matrix, all algorithms

apply a different technique to get the full haplotype assembly

determining the maternal and paternal chromosomes. Differ-

ing parts of these algorithms will be described in the next

parts of the paper.

2.2 HASH

Since there exists an unknown number of haplotype frag-

ments from haplotype a and b, a way to equalize them in

number is required. For this aim, complements of each frag-

ment is taken and included into the fragment set. This time

there exist two copies of each fragment. To equalize their

effect on Pr(X | q , H), we should divide the probability

found from the constructed dataset into two.

HASH is a Markov Chain Monte Carlo (MCMC) method

which takes the error probabilities into account. It iterates by

performing a set of transitions of states on the SNP Fragment

Matrix. A transition of fragment matrix is defined as flipping

the values of a subset of SNP‟s (column values) forming a

new fragment matrix. Optimizing the weight of the edges in

a fragment matrix it is possible to find a suitable haplotype

assembly that this matrix is derived.

The crucial point in MCMC is selecting the set of subsets of

columns which the selection will be made for flipping. We

represent this set of subsets of SNP‟s with Γ. A natural choice

of Γ is {{1},{2}, … ,{n}} for n different SNP‟s. Starting

with this subset and optimizing this set to get the best fitting

haplotype, the haplotype assemblies can be found.

During the iteration for finding the optimum subset, a mini-

mum cut method is used to find the optimized subset. The

fragmentation matrix is converted into a graph. Each node in

the graph represents a column of the fragmentation matrix, in

other words a SNP. The edges shows whether some fragment

that covers both columns. The weights of the edges become

the number of fragments that cover both columns.

A cut is defined as a subset of nodes and edges of the original

graph. Constructing a fragment graph this way and using

minimum cuts method to partition the graph into subsets, it is

possible to find an optimum haplotype assembly from the

given fragmentation matrix. An illustration of this method is

shown in Figure 2.

Figure 2: An illustration of the application of minimum

cut method in order to find the optimum haplotype as-

sembly.

To summarize the points I have mentioned above, it is appro-

priate to include a pseudocode of the algorithm used by

HASH. This pseudocode can be found in Pseudocode 1.

HASH(X,q)

1. Set Γ(0) ← Γ1.

2. Set H(0) at random or otherwise.

3. For t = 1, 2, . . .

o (a) Let H(t) = ℳ(Γ(t−1), X, H(t−1), c) be the haplotype

obtained after running ℳ(Γ(t−1)) for c × n steps (c ≈

1000).

o (b) Compute Γ(t) = WeightedGraphPartitioning(X, H(t)).

4. Set Γ ← Γ(t) and discard all previous samples.

5. Run the chain ℳ(Γ) initialized with H(t) for ∼106 × n steps.

Pseudocode 1: HASH Algorithm

2.3 Fast HARE

Fast HARE is an algorithm developed by some researchers in

the area of Computer Scientists [2]. This is the reason of the

less biological depth that the paper covers. In fact the method

is a heuristic to the problem of haplotype assembly problem.

It takes the SNP fragment matrix defined in 2.1 and a para-

meter t which will be described later as the input. It outputs

the haplotypes and the optimized SNP fragment matrix with

a partition of the given fragments into two groups, the ones

corresponding to haplotype 1 and ones that correspond to

haplotype 2.

The main steps of the application of the method are as fol-

lows:

1. Eliminate the columns in which fa <= t or fb <= t.

2. Sort the rows according to the ones starting with

non-null stretch.

3. Partition the rows of the matrix constructed accord-

ing to which haplotype they represent.

To shortly describe these steps of the algorithms, in the first

step the columns which doesn‟t show a SNP pattern are elim-

inated. fa = Na / (Na + Nb) and fb = Nb / (Na + Nb) so these

values show the amount of differing in a column of haplo-

type fragments. Columns which are dominated by a fraction

less than t are eliminated. The most different columns are

included into the fragmentation matrix to be processed.

In the second step, the columns of the matrices are sorted

according to the number of gap characters (-) they include at

the beginning of the sequence. As a result of this sorting, the

haplotype fragments representing the beginning parts of the

haplotypes are taken to the front rows of the fragment matrix.

In the third step, a decision is made about which haplotype

the invested fragment comes from. The first row is assigned

to the first haplotype and so put to S1 which is the set

representing the haplotype fragments coming from the first

haplotype. Then each row of the fragment matrix is put into

either S1 or S2 according to the distance of the row to the

elements in these sets. At the end, all of the fragments will be

separated into two sets corresponding to the ones coming

from haplotype 1 and haplotype 2. Reconstruction of the

haplotypes is easy when these partitions are found. A basic

string matching is made after flipping the values of the rows

corresponding to S2.

They have computed the complexity of this algorithm as

O(nlogn +nm) where n is the number of fragments and m is

the number of SNP‟s selected. This can be shown by recog-

nizing that the O(nlogn) comes from second step of the algo-

rithm and O(nm) complexity comes from the third step.

2.4 HapCUT

In fact there is nothing much to say about HapCUT after giv-

ing detailed description of HASH in the previous section.

The authors of these two methods are more or less the same

and the proposed method in HapCUT is just a variation of

HASH.

This time instead of finding minimum cuts they have calcu-

lated the maximum cuts during the optimization of the sub-

sets to be taken to be flipped. In other words, they perform

the determination of the fragments corresponding to haplo-

type 1 and the ones corresponding to haplotype 2 by using

maximum cuts instead of minimum cuts. They try to optim-

ize the score of the new matrix. They use minimum error cuts

(MEC) score as the distance metric of the graphs. All the

other parts are similar when compared to HASH.

A summary pseudocode describing the algorithm can be seen

in Pseudocode 2.

Procedure HapCUT

Initialization: Choose an initial haplotype configuration H1 ran-
domly.

Iteration: For t=1,2,...

1.Construct the graph GX(Ht)

2.Compute a cut S in GX(Ht) such that wH(S) 0

3.If MEC(H S) MEC(Ht), Ht+1=H S

4.Else Ht+1=H

Pseudocode 2: The algorithm of HapCUT

In this paper, different scoring mechanisms can also be ap-

plied aiming to maximize their score. In fact the study can be

seen as an extension of HASH which allows application of

different scoring mechanism and performs faster compared to

HASH.

5. COMPARISON OF THE ALGORITHMS

In the paper of Bansal et al. [3], a comparison of the three

methods depending on the MEC scores is given. This com-

parison diagram can be seen from Figure 3.

Figure 3: Comparison of the three algorithms on haplo-

type assembly problem according to the performance of

MEC score.

As can be seen from Figure 3, HASH and HapCUT perform

more or less the same on the performance criterion of MEC

score by means of accuracy. These two methods outperform

Fast HARE by producing less error. The MEC score of errors

is found to reduce with an amount of 20 – 25%. Although

this information is taken from the paper describing HapCUT

[3], the amount of improvement is too high to be exagge-

rated.

On the other hand HapCUT seems an extension of HASH

which is performed as a result of comments received for the

published work. Although the performances of the methods

have not increased in huge amounts, the algorithm became

more open for modifications. It is possible to apply different

scoring mechanisms such as minimum fragment removal

(MFR), minimum error correction (MEC), minimum SNP

removal. Also the results show that the HapCUT algorithm

performs faster that HASH. An example comparison of the

speed of algorithms is given as a computation is performed in

30 minutes by HapCUT while it takes 10 hours to complete

with HASH. This shows a huge amount of reduction on the

complexity of the algorithm although full comparison of

complexities of two algorithms is not given in the text.

6. DISCUSSION

Within the current algorithms for the haplotype assembly

problem, HapCUT seems the best performing one in be-

tween both by means of speed and accuracy. Most of the

previous methods use reconstruction of the haplotype from

the fragments but these three algorithms is more based on

determining which haplotype produced the given fragment.

Keeping this in mind, faster and easier predictions can be

made using the given fragments.

Although the algorithms are mentioned to be approximation

algorithms, they are erroneous. Even with these errors it is

possible to produce promising results. The methods can be

improved by means of applying different methods other than

the used graph based methods. The three methods are more

or less the same. They all try to separate the given fragments

into two sets which represent the origin of the fragment.

This separation information can be improved by performing

cross validation. This would reduce the amount of error

made and produce better results.

REFERENCES

[1] Vikas Bansal, Aaron L. Halpern and Nelson Axelrod,

“An MCMC algorithm for haplotype assembly from whole-

genome sequence data”, Genome Research, vol. 18, pp.

1336 - 1346, 2008.

[2] Alessandro Panconesi and Mauro Sozio, “Fast Hare: A

fast heuristic for single individual SNP Haplotype Recon-

struction”, WABI, pp. 266-277, 2004.

[3] Vikas Bansal and Vineet Bafna, “HAPCUT: an efficient

and accurate algorithm for haplotype assembly problem”,

ECCB, pp. i153-i159, 2008.

[4] G. Lancia, “Mathematical Programming Approaches for

Computational Biology Problems”,In Modelli e Algorithmi

per l‟Ottimizzazione di Sistemi Complessi, Agnetis and Di

Pillo Eds. Pitagore Editrice, 265-310.

