
Development of a Tetris Playing Agent in Java

Ömer Nebil Yaveroğlu

Department Of Computer Engineering

Middle East Technical University

nebil@ceng.metu.edu.tr

Abstract

In this paper, an artificial intelligence algorithm is
developed for implementing a Tetris playing agent. Tetris is
a well-known board game in which the aim is to place
randomly falling blocks of different shapes on a game board
in such a way that the placed blocks form a line. When a
line is formed, the blocks in this line are removed giving
some points to the player. An agent playing this game is
developed in this study by seeing the problem as a
constraint satisfaction problem. By computing a score for
some possible placements of a given block and then
performing a search on the resulting scores, an action
decision is made. In order to achieve simplicity on the
number of possible placements, an ordering of possible
actions to be performed is made. As a result, an agent
playing Tetris in a reasonable way is implemented. On
average, 4471 blocks can be placed without filling the board
in the final version of the agent.

1. Introduction

 Tetris is a falling blocks game in which the player aims
to prevent filling the game play area. Pieces of seven
different orientations (Figure 1) appear randomly in the
game play area [1]. You aim to form lines by these pieces
on game board by rotating and moving the pieces left and
right while they are falling. When a line is filled, it is
cleared from the game play area and all blocks above it fall
one level down. The longer you are able to play by this
way without filling the game play area, the better scores
you can achieve. So the aim is to maximize the game
duration trying to remove lines of blocks from the game
board.

Figure 1: Seven different orientations of pieces

 There are many competitions about game playing in the
areas of artificial intelligence and machine learning. Tetris

is a popular game for these competitions because of its
simple nature and the huge number of possibilities that it
includes. RL-Competition [2] is one of these competitions
which require its competitors to implement a reinforcement
learning algorithm for game playing. The framework that
they provide for competition purposes, RL-Viz, is used
during the implementation of the Tetris playing agent. The
only necessary thing to implement the Tetris playing agent
with this framework is to develop the agent. All the other
issues like game logic, graphical interface are handled by
the framework.
 The approach followed during the implementation of the
agent is a straight-forward search algorithm. After
considering different possible placements, the best
placement is chosen. A score is computed for each possible
placement by considering some scoring parameters.
Namely these parameters are pile height, number of holes,
surface area, altitude difference, number of blocks,
weighted block number, number of removed lines and row-
column transition number. A linear function is formed with
these parameters to find out how good a placement is.
 There are many different methods in literature proposed
for Tetris playing. Even some very complex algorithms
such as genetic algorithms are used in these studies. It is
not possible to compare my algorithms directly with other
studies since our scoring mechanisms differ most of the
time. But I can easily say that even with a basic algorithm
very promising results can be achieved. I have used an
algorithm evaluation metric which takes the number of
blocks entering into the game play area in a single game.
This scoring also gives some direct idea about the length of
a single game duration. After the optimizations performed,
4471 blocks can enter the game play area on average in the
best case. This is a good score since performing random
actions result with an average score of 90.

2. Related Work

 Tetris is a well-known game since mid-1980s. Because
of this, there have been many efforts in order to find an
optimal solution to the game. The game also forms a very
competitive area to work on since it is rather simple and
there is no limit of improvement. Because of these reasons,
there are many papers related to Tetris playing. Among this
variety of papers, the most promising papers were the

Breukelaar et al.’s [3], Böhn et al.’s [4], Hoogeboom et
al.’s [5], Szita et al.’s [6] and Farias et al’s [7] papers. The
focus of Breukelaar et al.’s paper [3] is proving the NP-
Completeness of Tetris goals and NP-Hardness of making
approximations about the goals in Tetris. In Hoogeboom et
al.’s paper [5], some decidability questions related to Tetris
is tried to be answered. These two papers answer some
questions about the theory of Tetris.
 The other three papers are more focused on solutions for
Tetris playing. The Böhn et al.’s paper [4] proposes a
solution to where and how to place a falling piece. They
have used a genetic algorithm for this purpose. They
calculate a rating for all possible moves with the next two
coming blocks and make the move which gives the best
rating score. They perform some forward checking for this
reason. They have removed 24311 rows with a linear
heuristic and 68421 rows with an exponential heuristic
which are much better than the results that could be
reached in this study. It is one of the best solutions in the
area of Tetris playing. It should be kept in mind that they
use an advanced technique, genetic algorithms and they
perform forward checking which improves their results a
lot. The agent developed in my study makes decisions with
just the given block and so no future predictions can be
made in my implementation. It would be possible to make
some comparisons between my approach and their
approach if I could have some information about their
performance with no forward checking version of their
algorithm. I have improved some ideas given in this paper.
Some parameters of my scoring mechanism match with the
ones that they mentioned in their paper. So this paper was
important for me because of the ideas it gave to me.
 Szita et al.’s paper [6] uses Tetris as a benchmark for
their noisy cross entropy method that they have developed
for using with reinforcement learning. There were no clear
performance measures of this paper as the Böhn et al’s
paper had but they mentioned that their paper’s
performance is worse than the Böhn et al’s solution. This
paper has also proposed some scoring parameters as Böhn
et al did, giving me some intuition on forming my scoring
parameters.
 In Farias et al’s paper [7], an approximate dynamic
programming algorithm is proposed for playing Tetris.
According to this paper, Tetris can be reduced to stochastic
control problem and so it is solvable by dynamic
programming. They use randomized constraint sampling
while applying the dynamic programming algorithm for
simplifying the computation process and for reducing
computational complexity of dynamic programming. The
best score that they could achieve is between 4000 – 4900
cleared rows which are more or less similar to my current
results. The idea of checking the possible actions in an
order was a result of the randomized constraint sampling
mentioned in this paper. The main advantage of my
approach compared to their approach is that my algorithm
is more efficient because of their dynamic programming
usage.

3. Problem Definition and Algorithm

3.1. Task Definition

 Tetris is a simple board game in which given a falling
piece, the aim is to place this piece to the most suitable
place, in order to remove lines of blocks from the board.
So an agent developed for playing Tetris should be able to
get the current board situation and the falling piece type as
input and return the best action to maximize the number of
removed lines from the board as the output. There can be
seven different types of falling pieces. The piece types are
named left gun, left snake, right gun, right snake, line,
square and t-shape in the order of appearance in Figure 1.
There are also six different actions that can be performed.
These actions are going left, going right, rotating
clockwise, rotating counter-clockwise, dropping one row
down and dropping to the bottom. The first four moves
also perform dropping one row below automatically. For
example, if you perform go left action the center of your
piece falls down one row and moves one column left. So
placing a block to a suitable place requires some number of
steps to be performed. A piece cannot be placed in a
preferred location directly.
 The competitive environment of a Tetris as a result of its
scoring mechanism made it a popular game for over 20
years. Competitions are being held on this domain because
of the great interest of people on Tetris. It is also a good
area to make studies especially in artificial intelligence and
machine learning since it allows probabilistic reasoning
and strategy development. In fact these are also the reasons
for the development of the project forming this paper.

 3.2. Algorithm Definition

 The algorithm of the developed agent performs a search
on the possible placements of the falling block and chooses
the best in them. A placement can be made as a result of a
series of movements. The agent creates an action sequence
for each newly appearing falling piece. Then it performs
the created action sequence returning its values one-by-one
to the framework at each of the iteration steps.
 Creation of the action sequence is the most important
part of the algorithm. For each falling piece, some
placements are scored according to a scoring function. The
action sequence giving the best score is kept to be
performed. For simplifying the calculation of the possible
placements, the possible actions are checked in an order.
All the possible placements that can be performed as a
result of first rotating, then moving left or right and finally
dropping to the bottom are considered. Assume a line
shape has appeared. The action sequences checked for
these pieces are as in Table 1. For all seven different types
of falling blocks, this order is followed and all possible
action sequences with this ordering are considered. For
square shape 9, for line shape 17, for left snake 16, for
right snake 16, for t-shape 36, for left-gun 30 and for right

gun 30 possible action sequences are considered in this
way.

Rotation
Movements

Movements of
left and right

Dropping

- L , L , L D

- L , L D

- L D

- - D

- R D

- R , R D

- R , R , R D

CRT L , L , L , L , L D

CRT L , L , L , L D

CRT L , L , L D

CRT L , L D

CRT L D

CRT - D

CRT R D

CRT R , R D

CRT R , R , R D

CRT R , R , R , R D

Table 1: Action sequences checked for line shaped
falling piece (CRT: Clockwise Rotation, L: Move Left,

R: Move Right, D: Drop)

 Each of the controlled action sequences are scored with
a linear function. The scoring function consists of 8
parameters. These parameters are:

• Pile Height: It is the row of the highest occupied cell on
the board. This value should be kept as small as
possible since the game ends when the pile height
becomes equal to the board height. (See Figure 2)

• Hole Count: It is the number of all unoccupied cells
that have at least one occupied cell above them. This
value should be kept as small as possible since holes
cause an increase in the pile height and cannot be
removed easily. (See Figure 2)

• Removed Lines: It is the number of lines that are
cleared as the result of the last action. This value will
be important in determining the outcomes of placing a
block to a position. It should be maximized to increase
the game duration and score.

• Altitude Difference: It is the difference between the
highest occupied and lowest free cell. It is important for
avoiding creation of a pile in one corner of the board
and leaving other corner empty. The evaluation
function will try to keep this value minimized. (See
Figure 2)

• Blocks: It is the number of blocks that exist on the
board. This value will be kept as small as possible to
avoid filling the game board.

• Weighted Blocks: It is a score given depending on the
number of occupied cells on the board. The weight of a
block comes from the height it occupies. The higher

blocks are penalized more when compared to lower
ones. So this value is tried to be kept small. This
parameter is especially useful when the board is empty
since it discriminates the orientation differences of a
falling piece.

• Surface Length: It is the number of borders that a
falling piece can be placed on or near. In other words, it
is the number of block borders that are not in a hole.
(See Figure 2) Its value should be minimized in order
to achieve some compactness of placement.

• Number of transitions: It is the total number of block
borders. In other words, it is the number of transitions
from an occupied area to unoccupied area and vice
versa for each row and column. This parameter can also
be thought as the total number of borders in the holes
plus the surface length parameter.(See Figure 2) This
value is the most deterministic parameter of the scoring
function because of its’ success in placing the pieces in
the most compact way. This value should be minimized
in order to achieve compactness and avoid holes.

Figure 2: Representation of Pile Height, Altitude
Difference, Surface Length and Holes

 While keeping the aims mentioned for each parameter in
mind, these parameters are combined to form a linear
scoring function. In order to equalize their effect on the
function, their scores are normalized to the range [0,100].
Then these normalized values are combined as a linear
function as below.

f(Score) = a1 * n1 + a2 * n2 + … + a8 * n8

 In this formula, ai values represent the constants that define

the weight of the parameter. The ni values represent the

normalized parameter values. The ai values are optimized by

experimenting with different values in a numerous tries. A

huge amount of improvement is achieved as a result of this

optimization. The resulting scoring functions are applied for

all possible action sequences and the highest score is taken

as the best action to be performed.

4. Experimental Evaluation

4.1. Methodology

 As a performance metric, RL-Competition framework uses
the number of blocks entering the game board during a
game. This measure also gives some idea about the duration

of a game. This measure is directly computed by the RL-
Competition framework and represented by three numbers,
E/S/T. (Figure 3) The E value shows which run is being
performed. The S value represents the number of blocks
which entered to the game board at current run. T the value
represents the total number of blocks which entered to the
game board at E runs.

Figure 3: A screenshot of the framework showing a run

performed by a random agent

 The scoring mechanism for algorithm evaluation is
extracted from these values with the following formula.

Average Score = (T - S) / (E – 1)

 For example the score of the board situation given in
Figure 3 is (3421 - 55) / (38 - 1) = 90.97.

 This scoring mechanism is meaningful since it gives the
average number of blocks that can appear on the game
board without filling the board. Most of the measurements
performed in other studies use the number of lines
removed with a given number of blocks as the evaluation
score of an algorithm. It may be parallel to the aim of the
game but I don’t think it is a good scoring metric for
measuring the performance of an agent. That method may
give good results in a case like iteratively removing one
line of blocks on an empty board and filling the board to
get an empty board again. But the evaluator function
should measure the compactness of the solution. It should
also address the duration of the game that can be played
without filling the board. The scoring mechanism that is
used in this study allows the measurement of these factors.

4.2. Results

 Defining the parameter constants of the scoring function
is the most time consuming part of the development

process. After the optimization process, the constants of
the parameters giving the highest evaluation score are
defined as in Table 2.

Pile Height 3

Hole Count 40

Removed Lines 2

Altitude Difference 1

Blocks 1

Weighted Blocks 1

Surface Length 1

Number Of Transitions 35

Table 2: Optimized constants for scoring parameters

 As can be seen from the table, the most dominant
parameters of the scoring function are the hole count and
the number of transitions. So the main aim of the algorithm
is achieving compactness and minimizing the hole count.
When run with these parameters, the board situation in
Figure 4 can be achieved.

Figure 4: A screenshot of the framework showing a run
performed by the implemented agent

 As can be seen from Figure 4, the average evaluation
score of my agent for this experiment is (434336 – 2601) /
(107 - 1) = 4072,97. After performing some number of
experiments, the highest achieved score with these
parameters is found to be 4471.

4.3. Discussion

 The implemented agent tries to maximize the
compactness of the placements trying to avoid holes. For
this aim, the algorithm has a strong architecture. But for
some extreme cases like a case in which no line shape
appears, the algorithm may not perform well. Sometimes it
requires line shape for the removal of lines.

 Another weakness of the algorithm is the ordering of
actions. The ordering of actions prevents the agent to make
moves like filling a hole which is open on one side. If the
algorithm performed actions without an order,
compactness of placements may increase and the number
of holes created may decrease. But considering all the
moves with no ordering would produce unmanageable
number of possible placements.

 On the other hand, the main advantage of the algorithm
is its’ simplicity. Even with the limited amount of
movements and the simple scoring function, good results
can be achieved. The most important features are the
number of holes and the number of transitions. The other
parameters of the scoring function are useful for making
decisions at non-differing cases like empty board. This
shows that the key point of getting high scores in Tetris is
avoiding holes.

5. Conclusion

 In this paper, the process of developing a Tetris playing
agent is presented. The algorithm makes a scoring on the
possible placements and chooses the best in them to
perform. An ordering is defined for the computation of
possible placements. In this ordering, the rotations are
considered first. Then moving the piece left or right and
finally dropping the piece are considered. For each of the
possible placements, a score is computed. The action
sequence giving the best score is performed. An evaluation
mechanism based on the number of blocks appearing in the
game is used to evaluate the algorithm developed. The
agent has achieved the score 4471 in the best case while a
random agent could make at most 90. This shows the huge
amount of improvement achieved. There are many
proposed methods for Tetris playing. Some of them even
use some advanced methods like genetic algorithms and
dynamic programming. When compared to them, my agent
produces worse results. But the results are important in the
manner that it is even possible to achieve good results with
simple algorithms. The development process also shows
the effects of different scoring functions.

6. Future Work

 The current algorithm is based on an ordering of actions.
This ordering is necessary since it is not possible to
compute all the possible placements of a falling piece if all
actions are allowed. This ordering makes the number of
possibilities manageable. On the other hand, the algorithm
doesn’t have the capability of filling unclosed holes since it

doesn’t have moving left or right capability. In the current
version of the algorithm dropping one row below action is
never used in action sequences. If this action is introduced
to the algorithm and the possibilities can be increased by
considering moving left or right action as the last action, an
improvement can be achieved.

 As far as I have observed, the variety of parameters of
the scoring function is enough for computing a reasonable
score for a placement. But it could be further improved by
adjusting the constants of these parameters more. Some
machine learning algorithms may be introduced for the
optimization of the multiplication constants. These
constants may also be defined depending on the falling
piece type. The easiest and simplest adjustment that can be
made on the agent is just playing with the parameters.

References

[1] “The Tetris game in wxWidgets”.
http://zetcode.com/tutorials/wxwidgetstutorial/thetetrisgam
e/

[2] RL-Competition Web Site. http://rl-competition.org/

[3] Ron Breukelaar, Erik D. Demaine, Susan Hohenberger,
Hendrik Jan Hoogeboom, Walter A. Kosters, David Liben-
Nowell. 2003. Tetris is Hard, Even To Approximate.
International Journals of Computational Geometry &
Applications

[4] Niko Böhm, Gabriella Kokai, Stefan Mandl. 2005. An
Evolutionary Approach to Tetris. MOC2005

[5] Hendrik Jan Hoogeboom, Walter A. Kosters. 2004.
Tetris and Decidability. Elsevier

[6] Istvan Szita, Andras Lörincz. 2006. Learning Tetris
Using the Noisy Cross-Entropy Method. Neural
Computation 18,2936-2941

[7] Vivek F. Farias, Benjamin Van Roy. Tetris: A study of
randomized constraint Sampling. Stanford University

http://zetcode.com/tutorials/wxwidgetstutorial/thetetrisgame/
http://zetcode.com/tutorials/wxwidgetstutorial/thetetrisgame/
http://rl-competition.org/

