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Abstract 

In this paper, an artificial intelligence algorithm is 
developed for implementing a Tetris playing agent. Tetris is 
a well-known board game in which the aim is to place 
randomly falling blocks of different shapes on a game board 
in such a way that the placed blocks form a line. When a 
line is formed, the blocks in this line are removed giving 
some points to the player. An agent playing this game is 
developed in this study by seeing the problem as a 
constraint satisfaction problem. By computing a score for 
some possible placements of a given block and then 
performing a search on the resulting scores, an action 
decision is made. In order to achieve simplicity on the 
number of possible placements, an ordering of possible 
actions to be performed is made. As a result, an agent 
playing Tetris in a reasonable way is implemented. On 
average, 4471 blocks can be placed without filling the board 
in the final version of the agent.  
 
 

1. Introduction 
 

 Tetris is a falling blocks game in which the player aims 
to prevent filling the game play area. Pieces of seven 
different orientations (Figure 1) appear randomly in the 
game play area [1]. You aim to form lines by these pieces 
on game board by rotating and moving the pieces left and 
right while they are falling. When a line is filled, it is 
cleared from the game play area and all blocks above it fall 
one level down. The longer you are able to play by this 
way without filling the game play area, the better scores 
you can achieve. So the aim is to maximize the game 
duration trying to remove lines of blocks from the game 
board. 
 

 
Figure 1: Seven different orientations of pieces 

 
 There are many competitions about game playing in the 
areas of artificial intelligence and machine learning. Tetris 

is a popular game for these competitions because of its 
simple nature and the huge number of possibilities that it 
includes. RL-Competition [2] is one of these competitions 
which require its competitors to implement a reinforcement 
learning algorithm for game playing. The framework that 
they provide for competition purposes, RL-Viz, is used 
during the implementation of the Tetris playing agent. The 
only necessary thing to implement the Tetris playing agent 
with this framework is to develop the agent. All the other 
issues like game logic, graphical interface are handled by 
the framework.  
 The approach followed during the implementation of the 
agent is a straight-forward search algorithm. After 
considering different possible placements, the best 
placement is chosen. A score is computed for each possible 
placement by considering some scoring parameters. 
Namely these parameters are pile height, number of holes, 
surface area, altitude difference, number of blocks, 
weighted block number, number of removed lines and row-
column transition number. A linear function is formed with 
these parameters to find out how good a placement is. 
 There are many different methods in literature proposed 
for Tetris playing. Even some very complex algorithms 
such as genetic algorithms are used in these studies. It is 
not possible to compare my algorithms directly with other 
studies since our scoring mechanisms differ most of the 
time. But I can easily say that even with a basic algorithm 
very promising results can be achieved. I have used an 
algorithm evaluation metric which takes the number of 
blocks entering into the game play area in a single game. 
This scoring also gives some direct idea about the length of 
a single game duration. After the optimizations performed, 
4471 blocks can enter the game play area on average in the 
best case. This is a good score since performing random 
actions result with an average score of 90. 
 
 

2. Related Work 
 
 Tetris is a well-known game since mid-1980s. Because 
of this, there have been many efforts in order to find an 
optimal solution to the game. The game also forms a very 
competitive area to work on since it is rather simple and 
there is no limit of improvement. Because of these reasons, 
there are many papers related to Tetris playing. Among this 
variety of papers, the most promising papers were the 



Breukelaar et al.’s [3], Böhn et al.’s [4], Hoogeboom et 
al.’s [5], Szita et al.’s [6] and Farias et al’s [7] papers. The 
focus of Breukelaar et al.’s paper [3] is proving the NP-
Completeness of Tetris goals and NP-Hardness of making 
approximations about the goals in Tetris. In Hoogeboom et 
al.’s paper [5], some decidability questions related to Tetris 
is tried to be answered. These two papers answer some 
questions about the theory of Tetris.  
 The other three papers are more focused on solutions for 
Tetris playing. The Böhn et al.’s paper [4] proposes a 
solution to where and how to place a falling piece. They 
have used a genetic algorithm for this purpose. They 
calculate a rating for all possible moves with the next two 
coming blocks and make the move which gives the best 
rating score. They perform some forward checking for this 
reason. They have removed 24311 rows with a linear 
heuristic and 68421 rows with an exponential heuristic 
which are much better than the results that could be 
reached in this study. It is one of the best solutions in the 
area of Tetris playing. It should be kept in mind that they 
use an advanced technique, genetic algorithms and they 
perform forward checking which improves their results a 
lot. The agent developed in my study makes decisions with 
just the given block and so no future predictions can be 
made in my implementation. It would be possible to make 
some comparisons between my approach and their 
approach if I could have some information about their 
performance with no forward checking version of their 
algorithm. I have improved some ideas given in this paper. 
Some parameters of my scoring mechanism match with the 
ones that they mentioned in their paper. So this paper was 
important for me because of the ideas it gave to me. 
 Szita et al.’s paper [6] uses Tetris as a benchmark for 
their noisy cross entropy method that they have developed 
for using with reinforcement learning. There were no clear 
performance measures of this paper as the Böhn et al’s 
paper had but they mentioned that their paper’s 
performance is worse than the Böhn et al’s solution. This 
paper has also proposed some scoring parameters as Böhn 
et al did, giving me some intuition on forming my scoring 
parameters. 
 In Farias et al’s paper [7], an approximate dynamic 
programming algorithm is proposed for playing Tetris. 
According to this paper, Tetris can be reduced to stochastic 
control problem and so it is solvable by dynamic 
programming. They use randomized constraint sampling 
while applying the dynamic programming algorithm for 
simplifying the computation process and for reducing 
computational complexity of dynamic programming. The 
best score that they could achieve is between 4000 – 4900 
cleared rows which are more or less similar to my current 
results. The idea of checking the possible actions in an 
order was a result of the randomized constraint sampling 
mentioned in this paper. The main advantage of my 
approach compared to their approach is that my algorithm 
is more efficient because of their dynamic programming 
usage. 
 

 

3. Problem Definition and Algorithm 
 

3.1. Task Definition 

 Tetris is a simple board game in which given a falling 
piece, the aim is to place this piece to the most suitable 
place, in order to remove lines of blocks from the board. 
So an agent developed for playing Tetris should be able to 
get the current board situation and the falling piece type as 
input and return the best action to maximize the number of 
removed lines from the board as the output. There can be 
seven different types of falling pieces. The piece types are 
named left gun, left snake, right gun, right snake, line, 
square and t-shape in the order of appearance in Figure 1. 
There are also six different actions that can be performed. 
These actions are going left, going right, rotating 
clockwise, rotating counter-clockwise, dropping one row 
down and dropping to the bottom. The first four moves 
also perform dropping one row below automatically. For 
example, if you perform go left action the center of your 
piece falls down one row and moves one column left. So 
placing a block to a suitable place requires some number of 
steps to be performed. A piece cannot be placed in a 
preferred location directly. 
 The competitive environment of a Tetris as a result of its 
scoring mechanism made it a popular game for over 20 
years. Competitions are being held on this domain because 
of the great interest of people on Tetris. It is also a good 
area to make studies especially in artificial intelligence and 
machine learning since it allows probabilistic reasoning 
and strategy development. In fact these are also the reasons 
for the development of the project forming this paper. 

 3.2. Algorithm Definition 

 The algorithm of the developed agent performs a search 
on the possible placements of the falling block and chooses 
the best in them. A placement can be made as a result of a 
series of movements. The agent creates an action sequence 
for each newly appearing falling piece. Then it performs 
the created action sequence returning its values one-by-one 
to the framework at each of the iteration steps.  
 Creation of the action sequence is the most important 
part of the algorithm. For each falling piece, some 
placements are scored according to a scoring function. The 
action sequence giving the best score is kept to be 
performed. For simplifying the calculation of the possible 
placements, the possible actions are checked in an order. 
All the possible placements that can be performed as a 
result of first rotating, then moving left or right and finally 
dropping to the bottom are considered. Assume a line 
shape has appeared. The action sequences checked for 
these pieces are as in Table 1. For all seven different types 
of falling blocks, this order is followed and all possible 
action sequences with this ordering are considered. For 
square shape 9, for line shape 17, for left snake 16, for 
right snake 16, for t-shape 36, for left-gun 30 and for right 



gun 30 possible action sequences are considered in this 
way. 
 

Rotation 
Movements 

Movements of 
left and right 

Dropping 

- L , L , L D 

- L , L D 

- L D 

- - D 

- R D 

- R , R D 

- R , R , R D 

CRT L , L , L , L , L D 

CRT L , L , L , L D 

CRT L , L , L D 

CRT L , L D 

CRT L D 

CRT - D 

CRT R D 

CRT R , R D 

CRT R , R , R D 

CRT R , R , R , R D 

 

Table 1: Action sequences checked for line shaped 
falling piece (CRT: Clockwise Rotation, L: Move Left, 

R: Move Right, D: Drop) 
 

 Each of the controlled action sequences are scored with 
a linear function. The scoring function consists of 8 
parameters. These parameters are: 

• Pile Height: It is the row of the highest occupied cell on 
the board. This value should be kept as small as 
possible since the game ends when the pile height 
becomes equal to the board height. (See Figure 2) 

• Hole Count: It is the number of all unoccupied cells 
that have at least one occupied cell above them. This 
value should be kept as small as possible since holes 
cause an increase in the pile height and cannot be 
removed easily. (See Figure 2) 

• Removed Lines: It is the number of lines that are 
cleared as the result of the last action. This value will 
be important in determining the outcomes of placing a 
block to a position. It should be maximized to increase 
the game duration and score. 

• Altitude Difference: It is the difference between the 
highest occupied and lowest free cell. It is important for 
avoiding creation of a pile in one corner of the board 
and leaving other corner empty. The evaluation 
function will try to keep this value minimized. (See 
Figure 2) 

• Blocks: It is the number of blocks that exist on the 
board. This value will be kept as small as possible to 
avoid filling the game board. 

• Weighted Blocks: It is a score given depending on the 
number of occupied cells on the board. The weight of a 
block comes from the height it occupies. The higher 

blocks are penalized more when compared to lower 
ones. So this value is tried to be kept small. This 
parameter is especially useful when the board is empty 
since it discriminates the orientation differences of a 
falling piece. 

• Surface Length: It is the number of borders that a 
falling piece can be placed on or near. In other words, it 
is the number of block borders that are not in a hole. 
(See Figure 2) Its value should be minimized in order 
to achieve some compactness of placement. 

• Number of transitions: It is the total number of block 
borders. In other words, it is the number of transitions 
from an occupied area to unoccupied area and vice 
versa for each row and column. This parameter can also 
be thought as the total number of borders in the holes 
plus the surface length parameter.(See Figure 2) This 
value is the most deterministic parameter of the scoring 
function because of its’ success in placing the pieces in 
the most compact way. This value should be minimized 
in order to achieve compactness and avoid holes. 

Figure 2: Representation of Pile Height, Altitude 
Difference, Surface Length and Holes 

 

   While keeping the aims mentioned for each parameter in 
mind, these parameters are combined to form a linear 
scoring function. In order to equalize their effect on the 
function, their scores are normalized to the range [0,100]. 
Then these normalized values are combined as a linear 
function as below. 

f(Score) = a1 * n1 + a2 * n2 + … + a8 * n8 

   In this formula, ai values represent the constants that define 

the weight of the parameter. The ni values represent the 

normalized parameter values. The ai values are optimized by 

experimenting with different values in a numerous tries. A 

huge amount of improvement is achieved as a result of this 

optimization. The resulting scoring functions are applied for 

all possible action sequences and the highest score is taken 

as the best action to be performed. 

 

4. Experimental Evaluation 

 

4.1. Methodology 

   As a performance metric, RL-Competition framework uses 
the number of blocks entering the game board during a 
game. This measure also gives some idea about the duration 



of a game. This measure is directly computed by the RL-
Competition framework and represented by three numbers, 
E/S/T. (Figure 3) The E value shows which run is being 
performed. The S value represents the number of blocks 
which entered to the game board at current run. T the value 
represents the total number of blocks which entered to the 
game board at E runs. 

 
Figure 3: A screenshot of the framework showing a run 

performed by a random agent 

 

 The scoring mechanism for algorithm evaluation is 
extracted from these values with the following formula. 

Average Score = (T - S) / (E – 1) 

 For example the score of the board situation given in 
Figure 3 is (3421 - 55) / (38 - 1) = 90.97.  

 This scoring mechanism is meaningful since it gives the 
average number of blocks that can appear on the game 
board without filling the board. Most of the measurements 
performed in other studies use the number of lines 
removed with a given number of blocks as the evaluation 
score of an algorithm. It may be parallel to the aim of the 
game but I don’t think it is a good scoring metric for 
measuring the performance of an agent. That method may 
give good results in a case like iteratively removing one 
line of blocks on an empty board and filling the board to 
get an empty board again. But the evaluator function 
should measure the compactness of the solution. It should 
also address the duration of the game that can be played 
without filling the board. The scoring mechanism that is 
used in this study allows the measurement of these factors. 

 

4.2. Results 

 Defining the parameter constants of the scoring function 
is the most time consuming part of the development 

process. After the optimization process, the constants of 
the parameters giving the highest evaluation score are 
defined as in Table 2. 

 

Pile Height 3 

Hole Count 40 

Removed Lines 2 

Altitude Difference 1 

Blocks 1 

Weighted Blocks 1 

Surface Length 1 

Number Of Transitions 35 

 

Table 2: Optimized constants for scoring parameters 

 

 As can be seen from the table, the most dominant 
parameters of the scoring function are the hole count and 
the number of transitions. So the main aim of the algorithm 
is achieving compactness and minimizing the hole count. 
When run with these parameters, the board situation in 
Figure 4 can be achieved. 

 

Figure 4: A screenshot of the framework showing a run 
performed by the implemented agent 

 

 As can be seen from Figure 4, the average evaluation 
score of my agent for this experiment is (434336 – 2601) / 
(107 - 1) = 4072,97. After performing some number of 
experiments, the highest achieved score with these 
parameters is found to be 4471.  

 



4.3. Discussion 

 The implemented agent tries to maximize the 
compactness of the placements trying to avoid holes. For 
this aim, the algorithm has a strong architecture. But for 
some extreme cases like a case in which no line shape 
appears, the algorithm may not perform well. Sometimes it 
requires line shape for the removal of lines. 

 Another weakness of the algorithm is the ordering of 
actions. The ordering of actions prevents the agent to make 
moves like filling a hole which is open on one side. If the 
algorithm performed actions without an order, 
compactness of placements may increase and the number 
of holes created may decrease. But considering all the 
moves with no ordering would produce unmanageable 
number of possible placements. 

 On the other hand, the main advantage of the algorithm 
is its’ simplicity. Even with the limited amount of 
movements and the simple scoring function, good results 
can be achieved. The most important features are the 
number of holes and the number of transitions. The other 
parameters of the scoring function are useful for making 
decisions at non-differing cases like empty board. This 
shows that the key point of getting high scores in Tetris is 
avoiding holes. 

5. Conclusion 

 In this paper, the process of developing a Tetris playing 
agent is presented. The algorithm makes a scoring on the 
possible placements and chooses the best in them to 
perform. An ordering is defined for the computation of 
possible placements. In this ordering, the rotations are 
considered first. Then moving the piece left or right and 
finally dropping the piece are considered.  For each of the 
possible placements, a score is computed. The action 
sequence giving the best score is performed. An evaluation 
mechanism based on the number of blocks appearing in the 
game is used to evaluate the algorithm developed. The 
agent has achieved the score 4471 in the best case while a 
random agent could make at most 90. This shows the huge 
amount of improvement achieved. There are many 
proposed methods for Tetris playing. Some of them even 
use some advanced methods like genetic algorithms and 
dynamic programming. When compared to them, my agent 
produces worse results. But the results are important in the 
manner that it is even possible to achieve good results with 
simple algorithms. The development process also shows 
the effects of different scoring functions. 
 

6. Future Work 

 The current algorithm is based on an ordering of actions. 
This ordering is necessary since it is not possible to 
compute all the possible placements of a falling piece if all 
actions are allowed. This ordering makes the number of 
possibilities manageable. On the other hand, the algorithm 
doesn’t have the capability of filling unclosed holes since it 

doesn’t have moving left or right capability. In the current 
version of the algorithm dropping one row below action is 
never used in action sequences. If this action is introduced 
to the algorithm and the possibilities can be increased by 
considering moving left or right action as the last action, an 
improvement can be achieved. 

 As far as I have observed, the variety of parameters of 
the scoring function is enough for computing a reasonable 
score for a placement. But it could be further improved by 
adjusting the constants of these parameters more. Some 
machine learning algorithms may be introduced for the 
optimization of the multiplication constants. These 
constants may also be defined depending on the falling 
piece type. The easiest and simplest adjustment that can be 
made on the agent is just playing with the parameters. 
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