
Efficient Rendering Large Terrains using
Multiresolution Modelling and Image Processing

Techniques
Ömer Nebil Yaveroğlu

Abstract—In this study, we propose an algorithm for rendering
large scale terrains given as height field files. It is costly to render
terrains in a computer graphics applications. In the basic implemen-
tation, the vertices given by the height field file should be combined
by triangles. A height field file of size 1024x1024 pixels can generate
up to 2 million triangles when the whole given data is rendered this
way. Even with today’s technology, it is not possible to render this
amount of data efficiently.

To overcome this problem, the simplest solution is to reduce the
number of triangles needed to render the scene in such a way that the
rendered image quality is not effected. There are several techniques
applied under the name of multiresolution modelling, which aims to
reduce the number of triangles to be rendered by generating several
different levels of details. We have developed a multiresolution
rendering technique in this paper, which uses image processing
techniques to decide on the detail levels. With the application of the
method we developed, it is possible to reduce the number of triangles
to be rendered upto 49%.

Keywords—Terrain Rendering, Median Filtering, Edge Detection,
Multiresolution Modelling

I. INTRODUCTION

Rendering of height fields is a well-known problem in
computer graphics. For the generation of the terrains in games
or simulations, thousands of polygons have to be drawn
repeatedly in real time. Even with the current improvements
in graphics hardware, it is still a difficult problem to render
terrains with changing height values. Many studies have been
performed for solving this problem. Some of these studies aim
to reduce the complexity by applying approximations on the
polygons to be drawn reducing the image quality. Some other
studies apply clipping on the whole terrain depending on the
camera position in order to reduce the number of polygons to
be processed. All these approaches come with some pros and
cons.

In the Literature Survey part of this paper, we will shortly
describe several solutions proposed to the problem. In the
Methods and Results part of the paper, we will describe the
solution developed by us in detail. You can find a short
summary of this paper in Conclusions part. We finalize the
paper mentioning the Future work required to improve the
performance results of the study.

II. LITERATURE SURVEY

In this part of the paper, we would like to mention the main
approaches and problems of the solutions for the rendering of

Ö. N. Yaveroğlu is with the Department of Computer Engineer-
ing, Middle East Technical University, Ankara, 06531 TURKEY e-
mail:nebil@ceng.metu.edu.tr

height fields. We will also focus on the solutions offered by
two papers which affected our solution to the problem most
([1],[2]) .

The main aim of the algorithms proposed as a solution to
terrain rendering is rendering the terrain in most realistic and
visually rich way with the minimum computational and hard-
ware requirements. For this aim, nearly all of the algorithms
use different Level of Detail (LOD) algorithms in order to
reduce the number of polygons to visualize the terrain. For the
adaptive modeling of terrains, a quad tree data structure is used
to keep the height field data. The height fields are provided to
the program as two dimensional matrices. The simplest way
to visualize the height values provided with these matrices
is combining them by quads. A quad-tree representation of
the data allows multi-resolution modeling of the data in a cost
effective way. In order to reduce the rendering complexity, the
quads in the quad tree can also be rendered as triangle fans.
Current graphics hardware has efficient rendering properties
for triangle fans. It is possible to render larger terrains by
using triangle fans than it is possible to render by rendering
with quads. Usage of triangle fans also reduce amount of error
and produce visually satisfactory terrains.

One way to reduce the number of polygons to be drawn is
grouping triangles having similar values into larger triangles.
With this approach, the smoother regions in the terrain are
combined and more detail is included for the regions that are
rough. Although usage of similar height values to group the
polygons together forming larger polygons reduce the number
of polygons to be drawn, the number of polygons can further
be reduced by using the distance to the camera position. In
real life, we see the details of the objects which are closer to
us more than the objects that are far away. Same thing applies
on terrains. Even though we see the smallest changes on the
terrain surface which are close to us, we do not recognize that
much detail if the terrain region we are looking is far away. We
just see a silhouette of the largest heights but not the details.
This fact can be used to reduce the number of polygons while
rendering the environment. The objects that are far away from
the camera can be rendered with more tolerance to errors. This
change will create larger polygons for regions that are far away
from the camera position.

Even though the idea of changing the detail level in order
to reduce the number of polygons to be rendered is simple
and effective, it comes with a number of problems. One basic
problem is deciding on the level of detail to be used in different
regions of the height field. Most of the methods use different



Fig. 1. The image (a) represents the tiles and their intersection. Image (b) shows how cracks are avoided by rearranging the triangles forming the crack.
The image on the left shows the case that can cause cracks. The image on the right shows the rearrangement to avoid the cracks.

error metrics to make the decision of the level of detail.
The distance to the camera and surface roughness become
parameters of these approaches. Another problem is cracks
which occur at the borders of different levels of detail. The
reason for crack occurrence is the mismatching of the height
approximations with the real height values. In order to get over
this problem, many different approaches have been used such
as crack filling, mapping these regions on the lower resolution
sample, adding T-vertices to higher resolutions and changing
connectivity of vertices for the higher level of detail polygons.

For the above problems, the camera position is static.
Even more problems occur when the camera location can be
changed. A problem called popping occurs while changing
the level of detail. Sudden changes in level of detail cause
this problem. Nearly all implementations of terrain rendering
allow a change of just one level between neighbor regions to
minimize this problem. But even with this precaution, popping
can be observed as the camera position changes. The basic
solution to this problem is performing an animation called
morphing while changing the level of detail. Morphing is
performed by adapting the positions of the points to the new
resolution in a time period.

Apart from these main algorithm dependent issues, there
are several problems that need to be studied. Texturing the
terrain with this multiple resolution values [4], performing the
rendering processes on just GPU without any computational
overhead to CPU [6], performing the calculation process on
parallel computers are some of the current research challenges.
But in the scope of this study, we will not be interested in these
problems since they are out of the scope of our project.

After mentioning the main problems of terrain rendering and
the solutions to these problems, we would like to provide the
solutions provided by Ulrich et al. [1] and Larsen et al. [2].
In the study of Ulrich et al.[1], a solution for rendering large,
static out-of-core datasets is proposed. The paper includes
a general overview of the problems and solutions in terrain
rendering. They use a Chucked LOD algorithm for generating
the detail levels to be used during the rendering process. At the
heart of the method, a static tree is constructed with largely
independent preprocessed meshes at the preprocessing step.

The meshes keep the primitives that can be drawn directly
in a single rendering call. As you proceed up on the tree,
you get into the lower resolutions of the same object. As a
matter of fact, this approach is followed in many of the other
studies. Quad-tree representation is a special data structure
which allows the use of chunked LOD algorithms. After
the construction of the quad-tree at the preprocessing step,
they compute maximum screen space vertex error for view
dependent rendering. With this error metric, they decide on
the level to render the quad. After deciding on the LOD to
represent the height field quads, problems such as cracking and
popping need to be eliminated. They overcome the cracking
problem by applying a crack filling algorithm. Crack filling
is performed by introducing new polygons at the borders of
different levels of details to fill the gap. For avoiding the
popping problem, they use simple morphing. They simply
animate the adaptation of the vertices to new locations by
slightly moving the location at each step. The study [1]
is successful except their solution to the cracking problem.
With a slight modification, this method would be a lot more
effective.

In another study performed by Larsen et al. [2], the terrain is
divided into equal sized tiles. The sizes of the tiles are reduced
when more detail is required. Dividing the tiles as needed, they
perform a similar algorithm to Chunked LOD. The difference
from the application of Chucked LOD algorithm in Ulrich et
al.’s study [1] is that they allow the tiles to intersect. These
intersecting areas form some kind of transaction regions which
become helpful in crack elimination. They eliminate cracks by
rearranging the triangles forming these intersecting regions.
An illustration of these regions and crack elimination is given
in Figure 1.Also their solution to popping is the application of
morphing. We will not provide the details of morphing since
we do not propose a solution for the popping problem.

There are some important proofs in Larsen et al.’s paper
[2]. One of these proofs is that usage of display lists results
with better performance when compared to direct usage of
polygons. In a similar way, usage of connected drawing prim-
itives such as strips and fans result with better performance
when compared to direct usage of polygons but worse than



display lists. This is a result of the working mechanisms of
graphics cards. The disadvantage of using display lists is that
it is not possible to modify the geometry after the display
list is created. Another proof that they perform is that only 5
levels of detail is enough to reduce the complexity. When the
tiles are divided into smaller tiles of four, 99.61% reduction
percentage can be achieved at the fifth detail level showing
that it is not meaningful to use any more levels of detail since
they have no effect on the polygon number reduction. It was
important to keep these implementation tricks in mind while
making the implementation.

The main bottleneck in the current implementations of mul-
tiresolution modelling is the high computation requirements in
order to decide on the level of detail. Also crack filling and
morphing includes some more computational cost on CPU.
So the rendering and computation processes should be carried
to GPU as much as possible.Also by this way, it would be
possible to perform the computations in parallel.Because of
that recent researches are focused on these aspects of the
terrain rendering problem. Studies are being done on texturing
the terrain or rendering terrain on just GPU with parallel
processing which are out of the scope of our project.

III. METHODS AND RESULTS

In our implementation, we have used the quad tree rep-
resentation of the height fields in order to use the Chucked
LOD algorithms. Using a top-down approach, we have decided
on the level of detail for different quads forming the terrain.
We decided the level of detail to render a quad by using an
error function which uses the distance to camera position and
surface roughness as parameters.

We have directly computed the distance to the camera
position. Depending on the distance to the camera position, we
have decided on the tolerance amount for the error occuring
as a result of approximation. By finding a constant factor,
defining the tolerance to the error, we allowed further away
tiles to be rendered in lower resolution. Similarly, this constant
factor resulted in more detailed tiles for the locations close to
the camera position.

In order to decide depending on the surface roughness,
we have used an image processing technique called median
filtering. Median filtering is an image smoothing algorithm.
By applying this smoothing algorithm, we have averaged the
values in the height field removing the sudden changes in the
height value. By comparing the error between the smoothed
height field and original height field, we have found the regions
where the surface has sharp differences. In other words, by
smoothing the heightmap file and then taking the difference
from the original image, we have found the reigions that are
rough. In these rough regions, we rendered the terrain in high
resolutions and vice versa.

To avoid cracks, we have rearranged the triangles of the
lower resolution tiles at the boundary regions. While removing
the cracks, this method produces more realistic looking images
since it increases the resolution just at the borders of the
resolution changes. We have not implemented a method for
the popping problem. Since our solution resulted with low FPS

values, we could not observe popping clearly. For avoiding
any unnecessary computational overhead, we did not take the
popping problem into account in our implementation. The one
and only solution to popping is applying morphing and it is
quite straight forward to implement. The morphing can easily
be included into our solution. This is why our implementation
does not provide a solution to popping for the moment.

We have compared the performance of our method by
counting the number of polygons rendered and by the FPS
value produced during the rendering process. In the following
subsections, we provide the details of our implementation and
the results of this applied method.

A. Construction of Quad Tree

For the methods to be applicable on the height field data, an
efficient data structure should be constructed. For this purpose,
quad tree’s are found to be the most suitable data structure. In
most of the research done in the field, quad trees is the most
popular data structure and it is used in nearly all of the studies.
This data structure fits the nature of the problem. Since the
tiles are considered as quads and since it is easy to divide the
tree symetrically as much as wanted, quad trees are the best
choice for keeping the height field data.

For the experiments we have made, we have used height
field data with a maximum size of 1024x1024 pixels. The main
reason for this assumption is that 2048x2048 height field files
does not fit into the memory of our computer. The highest
resolution we could use for height field data was 1024x1024
so we have developed our implementation accordingly.

During the construction of the quad tree, we have taken the
maximum size to be the root of the quad tree. We have divided
this tile into four generating the child nodes. Then we have
again divided the child nodes into four. This process goes on
for each generated child independently until the quad size of
the child is at the size of maximum resolution or until the
error metric is found to be small enough meaning that there
is no need for any more divisions. The computation details of
this error metric is described in the Deciding on the Level of
Detail (LOD) part of this paper.

B. Deciding on the Level of Detail (LOD)

One of the most important contribution we make to the
problem of terrain rendering is the Level Of Detail(LOD)
decision mechanism we have used. While deciding the Level
Of Detail to render a tile of the terrain, we have considered
the distance to the camera position and the surface roughness.

In order to decide on whether to generate more children
from a node or not, we compute an error metric. For each
node, this error metric is computed and the node is divided
depending on this computed value. The following formula is
used in order to compute this error metric.

errorMetric =
Average Error * Camera Constant

Average Quad Error

In this equation, Average Error and Average Quad Error
are parameters computed for measuring the surface roughness.



(a) Original Image (b) Smoothed Image (c) Difference Image

Fig. 2. The steps of processing the height field file using image processing

Camera Constant is computed depending on the camera
position and quad position.

As mentioned earlier, an image smoothing technique is
used to find the surface roughness. The given height map
is smoothed and the difference from the original image is
found by comparing the smoothed image with the original
image. The details of this process will be given in Application
of Image Processing Techniques part. But for the moment,
in order to describe the computation of Average Error and
Average Quad Error parameters of the above formula, we
will use the difference image term in order to mention the
data found by comparing the original image and the smoothed
image. Average Error is the average of the error values in the
difference image for the quad represented by the considered
node. For the quad represented by the considered node, the
corresponding values of the difference matrix are summed
and divided to the number of items summed in order to get
the average error value of the quad. Average Quad Error is
nothing but the Average Error of the root of the quad tree. It is
computed once at the beginning of the quad tree construction
and then used as a decision parameter for the surface roughnes.

The Camera Constant parameter is computed with the
below formula.

CameraConstant =
(Xcam - Xnode)2 + (Zcam - Znode)2

Distance Metric2

In the above equation Xcam and Zcam parameters are x
and z coordinates of the camera. Similarly Xnode and Znode
parameters are the x and z coordinates of the center of the
tile to be drawn. Distance Metric parameters is a constant
distance. It can be though as the distance that is used to lower
the resolution one level down. It does not work exactly like
this but the intuition behind is the same.

If errorMetric is less than or equal to 1, the quad is divided
into four children quads. Else the error caused by the quad
can be tolerated so the quad is not divided any further.

C. Application of Image Processing Techniques

As mentioned in the previous parts, median filtering is used
in order to find the rough regions in the given height field file.
The median filter is a non-linear image processing technique,

often used to remove noise from images or other irregularities
from the image files. The main idea of median filtering is
based on calculating the median of neighboring pixel values.
After deciding on the size of the filter to be used, this filter is
passed over the whole image file. At each step of this iteration,
the values under the filter are sorted and the median of these
values is taken to represent the value at the center [7].

We have used median filtering to smooth our height field
images. By smoothing our image, we eliminate the sharp
difference changes. We have used a median filter of size
16x16. The decision on the size of the median filter is made
depending on the quad size of highest resolution node. Also a
visual comparison is made in order to determine whether the
selected filter size is appropriate or not.

After applying median filter on our heightmap file using
MATLAB, we have compared the original height field file
and the smoothed height field file. For each pixel of these two
images, we have substracted the original height value from the
smoothed height value. This process gives us the regions that
have sharp changes in the height value. A sample height field
file, smoothed version of it and the difference image are given
as Figure 2.

D. Correction of Cracks

Several crack elimination and prevention methods are ex-
plained previously in the Literature Survey part of this pa-
per.Among them we have chosen to use a crack prevention
technique in order to not to increse the polygon count while
generating a non-realistic image. For this reason, we have
chosen to apply a reordering on the triangles to render a tile at
the borders of resolution changes. For an intersection of high
resolution and low resolution tile, we prefer to rearrange the
triangles of the lower resolution tile. In other words, we divide
the bigger tiles in order to match their height values with the
corners of the lower resolution tiles.

For crack prevention, prior to rendering the tiles, we first
have to find the regions that cracks occur. We have imple-
mented a recursive algorithm which searches neighbors of a
node that can cause cracks recursively. Our recursive algorithm
has a top down approach. So it starts from the root of the quad



(a) Original Image (b) Filling for Minimum Z value

(c) Filling for Minimum X value (d) Filling for Maximum Z value (e) Filling for Maximum X value

Fig. 3. The steps of the crack filling process made during rendering for a low resolution tile . For the lists returned for X maximum and X minimum values
corresponding z values which can cause cracks are returned as a list. Similarly for Z maximum and Z minimum values corresponding x values are returned.

tree and iterates searching the next child that can be a neighbor
of the considered node. After finding the neighbors that the
cracks can occur, we generate an ordered list of the cracking
points from the corners of the lower resolution tiles. Using this
ordered list, we rearrange the triangles of the lower resolution
tile.

The rearranging procedure is a bit complicated. We tried to
use triangle fans as much as possible since it is proven that it
is faster for a graphics card to render a triangle fan compared
to individual triangles. In our reordering algorithm, we first
eliminated the cracks occuring at the minimum z value of the
quad by combining the list returned for the minimum z value.
We take the second element of the list returned for minimum x
value. Taking this element as the pivot, we generate a triangle
fan with the elements in the ordered list returned for minimum
z value. Then we take the maximum x and minimum z value
of the quad as the pivot point and generate a triangle fan
with the ordered list returned for minimum x value. From the
second element of the list returned for minimum x direction
to the last element we take the vertices eliminating the cracks
in minimum x value of the quad. We continue this triangle
fan removing the cracks for maximum z value. We include
the list of points returned for the maximum z value until the
last two elements. When we reach the last two elements of
the list generated for maximum z value, we change the pivot
element of the triangle fan. We take the element before the
last element from the list returned for the maximum z value
as the pivot element. This time we iterate on the list returned
for maximum x value taking the vertices in the list. When
written, the algorithm seems very complicated but the process

can be understood better in Figure 3.

E. Results

We have implemented our algorithm using OpenGL with
C++ on a laptop with 512 Nvidia Geforce 9500 M graph-
ics card, Intel(R) Core(TM)2 Duo CPU T9300 @ 2.50GHz
processor, 2013 MB’s of memory. We have performed this
implementation starting from nothing. So no previously im-
plemented libraries or implementations have been used for
performing this implementation. We have achieved good re-
sults by means of reducing polygon count. But since we have
made the implementation just of CPU, FPS values are quite
low because of the computational overhead of the construction
and manipulation of the quad tree.

We have used two different benchmark height fields to test
our algorithm. You can see these height field images in Figure
4.We have not chosen these height fields randomly. The first
image is a smooth one where there are no sudden changes in
the height values. When it is rendered, it produces a terrain
consisting of two mountain like heights and a valley. The
second image is used for just seeing the performance of the
algorithm in a very complex scene.

In Figure 5, you can see the results of three different
algorithms we have applied to render the scene. These three
algorithms are the direct terrain generation with no optimiza-
tion, multiresolution terrain generation without crack filling
and multiresolution terrain generation with crack filling. While
comparing our performances on reducing the number of poly-
gons and increasing FPS values, we have used these three
algorithms. During the generation of the figures we have



(a) Smooth Height Field (b) Complex Height Field

Fig. 4. The benchmark height fields used for testing purposes

implemented illumination using Flat Shading. There are two
reasons for us to choose flat shading in this implementation.
The first one is that it is computationally cheaper compared to
Gouraud Shading. We didn’t want to lose computational time
for calculating the average vertex normals. Another reason for
us to choose flat shading is that it allows us to see the polygons
rendered. By this way, we can recognize which region is
rendered in lower resolution and which region is rendered in
more detail.

As we have told before, we have applied the three al-
gorithms on the two benchmark height field files. Their
performances on the number of triangles they generate and
the FPS values that could be achieved are listed in Table I
and Table II.As can be seen from the tables, the number of
triangles can be reduced 49% for the smooth image and 33%
for the complex image. These results were expected. Since
the complex image has many height changes, the algorithm
does not want to lose the height information. For that reason
the tiles are rendered in higher resolution resulting with lower
reduction on the number of polygons. But for a smooth image,
the results are very promising. It can be seen from Figure 5 that
even when the image is rendered in multiresolution with crack
filling, the resulting images are quite similar to the original
image.

From Tables I and II, it can be seen that for the mul-
tiresolution model without crack filling, the FPS values have
increased with the reduction of the number of polygons. But
for the crack filled case, the results were worse than even
direct rendering. The reason for this problem is that, we have
implemented crack determination in the display call back. So
each time the polygons should be rendered, the cracks will
be calculated again and again. Even though it seems like an
implementation error, in fact it was a conscious decision at
the time of implementation. We have thought that keeping the
neighbors of each tile would result with huge memory cost. In
order to avoid that we have performed crack finding in display
callback function. This resulted with reduced performance by
means of FPS. But it can still be a promising solution for high

FPS values with a bit of modification.

IV. CONCLUSIONS

In this study, we have tried to reduce the number of triangles
required to render a terrain without losing significant visual
information. For this aim, we have implemented an algorithm
using median filtering. We have used median filtering to
smooth the given height field image. Using this smoothed
and original image, we have determined the regions which
have sharp changes of height values. These regions with sharp
height changes and regions close to the camera position are
rendered in high detail. We have also developed a new crack
correction method in our implementation in order to fill the
gaps occuring between different levels of details.

We have achieved good results by means of reducing the
polygon count. We have reached up to 49% polygon count
reduction. This is really a high amount of improvement. By
means of FPS value, we again achieved high values when the
crack filling algorithm is not activated. The reduction on the
number of polygons can even increase the FPS value 2 times.
But for the crack filled algorithm, since the positions where
the cracks occur are found by searching the quad tree at the
display call back, FPS values are reduced in huge amount. If
the neighbors were determined outside the display callback,
we would again get high FPS values. But this change would
require more memory since neighboring information should
be kept when they are computed outside the display callback.

V. FUTURE WORK

The first improvement to be done is the correction on the
crack determination algorithm as we mentioned in the Results
and Conclusions parts of the paper. Since huge computational
cost is introduced as a result of the computation of the cracking
regions again and again, the FPS values extracted from the
crack filling algorithm are quite low. If the neighbors were
calculated outside the display callback and kept in the quad
tree, the algorithm would perform a lot better.



TABLE I
PERFORMANCE COMPARISON FOR THE THREE ALGORITHMS APPLIED ON THE SMOOTH HEIGHT FIELD FILE

Direct Rendering Without Crack Filling With Crack Filling
Minimum Tile Size FPS Number of Triangles FPS Number of Triangles FPS Number of Triangles

2x2 3.75 522242 7.57 243260 0.96 267236
4x4 15.06 130050 25.61 70430 3.54 76734
8x8 61.44 32258 90.36 20102 12.19 21647

16x16 246.75 7938 313.06 5672 43.26 6065
32x32 867.13 1922 985.01 1580 161.67 1681

TABLE II
PERFORMANCE COMPARISON FOR THE THREE ALGORITHMS APPLIED ON THE COMPLEX HEIGHT FIELD FILE

Direct Rendering Without Crack Filling With Crack Filling
Minimum Tile Size FPS Number of Triangles FPS Number of Triangles FPS Number of Triangles

2x2 3.63 522242 5.41 336626 0.73 354323
4x4 15.03 130050 19.15 91094 2.73 95806
8x8 60.96 32258 72.85 24584 10.28 25886

16x16 246.75 7938 265.46 6680 37.43 7003
32x32 876.24 1922 985.01 1808 142.147 1857

There can also be some improvements in the decision
mechanism of the level of detail. Some more parameters
can be added to the computation to generate more realistic
images. Also in order to reduce the number of triangles send
to graphics card to be rendered, clipping of the regions that
are not visible can also be implemented.

On the other hand, the performance values can be increased
in great amounts if the algorithm is parallelized and imple-
mented by GPU programming. This change would reduce the
computations done by CPU which is the current bottleneck of
the implementation. The reduction percentage on the number
of polygons is still promising and the method can be used
more efficiently when GPU programming is included.

REFERENCES

[1] Ulrich, T. (2002). Rendering Massive Terrains using Chun-
ked Level of Detail Control.

[2] Larsen, B. D.; Christensen, N. J. (2003). Real-time Terrain
Rendering using Smooth Hardware Optimized Level of
Detail. Journal of WSCG, Vol.11, No.1, ISSN 1213-6972.
Plzen, Czech Republic: UNION Agency Science Press.

[3] Boer, W. H. (2000). Fast Terrain Rendering Using Geo-
metrical MipMapping.

[4] Martin Schneider, R. K. (2007). Efficient and Accurate
Rendering of Vector Data on Virtual Landscapes. Journal
of WSCG, 2007 .

[5] Stefan Rttger, W. H.-P. (1998). Real-Time Generation of
Continuous Levels of Detail for Height Fields. WSCG’98.

[6] Szymon Rusinkiewicz, M. L. (2000). QSplat: A Mul-
tiresolution Point Rendering System for Large Meshes.
SIGGRAPH 2000. New Orleans, LA, USA.

[7] Lin Yin, Ruikang Yang,Gabbouj, M.,Neuvo,
Y.,(1996).Weighted median filters: a tutorial. Circuits
and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on.Volume: 43, Issue:3,Page(s): 157-
192,ISSN: 1057-7130.



(a) Result of Terrain Generation with No Optimization

(b) Result of Multiresolution Terrain Generation without Crack Filling

(c) Result of Multiresolution Terrain Generation with Crack Filling

Fig. 5. Results of the application of the three terrain rendering algorithms on the Smooth Height Field file with a minimum tile size of 4x4


