Network Security

Attila Özgit

METU, Department of Computer Engineering ozgit@metu.edu.tr

Based on:

Henric Johnson's (Blekinge Institute of Technology, Sweden) course slides William Stallings' "Network Security Essentials" book.

Outline

- □ Introduction
 - * Information Security
 - * Network Security vs. Computer Security
- Attacks, services and mechanisms
- Security attacks
- Security services
- Methods of Defense
- A model for Internetwork Security

A Definition

Security is a state of well-being of information and infrastructures in which the possibility of successful yet undetected theft, tampering, and disruption of information and services is kept low or tolerable.

Vulnerability, Threat and Attack

- A vulnerability is a known or unknown weakness of an (somehow) accessible service - software.
- A threat is a potential violation of security.
 - * Flaws in design, implementation, and operation.
- An attack is any action that violates security.
 - * Active adversary.

Owners / Risks / Assets

Attacks, Services and Mechanisms

- Security <u>Attack</u>: Any action that compromises the security of information.
- Security <u>Mechanism</u>: A mechanism that is designed to detect, prevent, or recover from a security attack.
- Security Service: A service that enhances the security of data processing systems and information transfers. A security service makes use of one or more security mechanisms.
 - * Intended to counter security attacks

Policy & Mechanisms

- Policy: collection of high-level statements of what is, and is not allowed.
- Mechanism: a procedure, tool, or method of enforcing a policy.
 - * Security mechanisms implement functions that help prevent, detect, and respond to recovery from security attacks.
 - * Security functions are typically made available to users as a set of security services through APIs or integrated interfaces.
 - * Cryptography underlies many security mechanisms.

Security Services

- <u>Authentication</u>: assurance that an entity of concern or the origin of a communication is authentic it's what it claims to be or from
- Non-repudiation: offer of evidence that a party indeed is the sender or a receiver of certain information
- Access control: facilities to determine and enforce who is allowed access to what resources, hosts, software, network connections
- Monitor & response: facilities for monitoring security attacks, generating indications, surviving (tolerating) and recovering from attacks

Security Services

- <u>Security management:</u> facilities for coordinating users' service requirements and mechanism implementations throughout the enterprise network and across the Internet
 - * Trust model
 - * Trust communication protocol
 - * Trust management infrastructure

Impacts of Attacks

- Theft of confidential information
- Unauthorized use of
 - * Network bandwidth
 - * Computing resource
- Spread of false information
- Disruption of legitimate services

All attacks can be related and are dangerous!

Security Attacks

- Interruption: (an attack on availability)
 - An asset of the system is destroyed or becomes unavailable or unusable - by an unauthorized party
- □ Interception: (an attack on confidentiality)
 - * An unauthorized party gains access to an asset by observing the communication
- Modification: (an attack on integrity)
 - * An unauthorized party not only gains access to but tampers with an asset "Man in the middle"
- Fabrication: (an attack on authenticity)
 - * An unauthorized party inserts counterfeit objects into the system

Security Attacks

Security Goals

Threats

Passive Attacks

- Release of message contents
 - * e.g. a telephone conversation, an e-mail message
 - Subject to interception
- □ Traffic Analysis
 - e.g. opponent could observe the frequency and length of messages being exchanged (even though the messages are encrypted)
 - · can guess the <u>nature</u> of communication
- Very difficult to detect
- Emphasis is on <u>prevention</u> rather than detection

Active Attacks

- Masquerade
 - * One entity pretending to be a different entity
 - · Usually includes one of the other forms of attacks
- Replay
 - * Passive capture of a data unit and its subsequent retransmission
- Modification of messages
 - * Some portion of a legitimate message is altered, or that messages are delayed or reordered
- Denial of service
 - Prevents or inhibits the normal use or management of computing/communications facilities
- Difficult to prevent
- Emphasis is on <u>detection and recovery</u> rather than prevention

Security Services

- Confidentiality (privacy)
 - Protection of transmitted data from passive attacks
 - · All user data or selected messages or selected portions of messages
 - * Protection of traffic flow from analysis
- Authentication (who created or sent the data)
 - * Assuring that a communication is authentic
 - Two entities are authentic
 - Connection is not interfered (no masquerading party)
- Non-repudiation (the order is final)
 - * Receiver can prove that the message was in fact sent by the alleged sender
 - Vice-versa

Security Services (Cont'd)

- Access control (prevent misuse of resources)
 - * By identification or authentication
 - So that access rights can be tailored to the individual
- Availability (permanence, non-erasure)
 - * Denial of Service Attacks
 - * Virus that deletes files

A Model for Network Security

- □ Two parties (principals)
 - * Exchanging messages through a logical information channel
 - * By doing a security-related transformation
 - * Using a piece of secret information
- A Trusted Third Party
 - * To help secure transmission
- Opponent
 - * Trying to listen to or break the communication

Security Services

□ Four Tasks:

- * Design an algorithm for performing the security-related transformation
- * Generate the secret information
- * Develop methods for the distribution and sharing of the secret information
- * Specify a protocol to be used by the two principals

Network Access Security Model

- Protecting an information system from unwanted access
 - * Hackers, intruders, criminals
 - * Software/Hardware logic exploiting vulnerabilities
 - * Two kinds of threats (software):
 - · Information access threats
 - Service threats
 - e.g. Viruses, worms, Trojans

Security mechanisms:

- * A gatekeeper function
- * Variety of internal controls
 - · Monitor activity, analyze stored information

Network Access Security Model

Opponent —human (e.g., cracker) —software (e.g., virus, worm) Access Channel Gatekeeper function Information System Computing resources (processor, memory, I/O) Data Processes Software Internal security controls

Figure 1.4 Network Access Security Model

Methods of Defense

- Encryption (secure channels)
- Software Controls (access limitations in a data base, in operating system protect each user from other users)
- Hardware Controls (smartcard)
- Policies & Procedures (frequent changes of passwords)
- Physical Controls

The Art of War - Stratagem

Some Rules of War

- * Know when to fight and when not to fight. (1)
- * Know how to handle both superior and inferior forces. (2)
- * Animate your army by the same spirit throughout all its ranks. (3)
- * Prepare yourself and wait to take the enemy unprepared. (4)
- * Create military capacity that is not interfered with by the sovereign. (5)

Hence the saying:

- * If you know the enemy and know yourself, you need not fear the result of a hundred battles.
- * If you know yourself but not the enemy, for every victory gained you will also suffer a defeat.
- * If you know neither the enemy nor yourself, you will succumb in every battle.

Challenging Questions

Commander's Attack Triage Questions

- Am I under attack?
- What is the nature of the attack?
 - * Class, Mechanism, From where?
- What is mission impact?
 - * Urgency, Damage assessment & control, Initial response
- When did attack start?
 - * Follow-on damage assessment, What have I done wrong?
- Who is attacking
 - * What are they trying to do, What is their next step?
- What can I do about it?
 - * Course of action analysis, Collateral damage risk, Reversibility of action
- Long term solution

Currently, we are relatively Blind and Powerless ...

Intelligence - knowing the enemy... and yourself

Kinetic (Conventional)

- Know adversary position in land, sea and air
- Know adversary capabilities - weapons, forces, projection
- Keep element of surprisestealth, deception
- Know your own troops position and status
- Know warning signs of really bad events (nuke launch)
- Be able to measure effect of your actions - photos

Cyberspace

- Know where malicious code is and adversary entry points
- Know adversary capabilities toolkits, effects on our systems
- Occlude adversary on intrusion detection, policy, recovery
- Know the configuration of own defenses & dependencies
- Know the symptoms of a large-scale cyber-attack
- Be able to measure effect of policy & configuration changes