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A Probabilistic Concept Web on a Humanoid Robot
Hande Çelikkanat, Güner Orhan, Sinan Kalkan

Abstract—It is now widely accepted that concepts and con-
ceptualization are key elements towards achieving cognition on
a humanoid robot. An important problem on this path is the
grounded representation of individual concepts and the relation-
ships between them. In this article, we propose a probabilistic
method based on Markov Random Fields to model a concept web
on a humanoid robot where individual concepts and the relations
between them are captured. In this web, each individual concept
is represented using a prototype-based conceptualization method
that we proposed in our earlier work. Relations between concepts
are linked to the co-occurrences of concepts in interactions.
By conveying input from perception, action, and language, the
concept web forms rich, structured, grounded information about
objects, their affordances, words, etc. We demonstrate that, given
an interaction, a word, or the perceptual information from an
object, the corresponding concepts in the web are activated, much
the same way as they are in humans. Moreover, we show that
the robot can use these activations in its concept web for several
tasks to disambiguate its understanding of the scene.

Index Terms—Concepts, Conceptualization, Concept Web,
Markov Random Field

I. INTRODUCTION

In the near future, our daily lives will be populated by
robots, and one of the bottlenecks for that will be communi-
cation. Communication is simply an exchange of sequences
of symbols between two agents, and for this exchange of
symbols to work, the symbols should elicit the same meaning
in both agents. However, for the robot to be able to understand
the symbols and develop its skills and world knowledge over
time, these symbols should be linked to the sensorimotor
experiences of the robot, or the abstractions formed from
such experiences, as suggested by Harnad [1]. This problem
is so fundamental that it has quickly become a holy grail of
cognitive research, and the most probable solution seems to be
the embodiment of the mind [2]–[6]. Ample evidence has piled
up since then, demonstrating the significant coupling between
the sensory and motor cortices on the one side, and the high
level functions of conceptualization and language on the other
[7]–[10] - for a review, see, e.g., [6], [11], [12].

Abstracting from experience and representing abstracted
information in the form of concepts are crucial for cognition.
Concepts are representations that allow us to make sense of
the world by enabling us to categorize the continuous high-
dimensional sensorimotor space. Humans are remarkably good
at this task, i.e., the task of abstraction, as well as that of
relating concepts to each other. When we look at an object,
we not only recognize it almost instantly, but also retrieve
the information pertaining to its usage and other categorical
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information; e.g., the affordances of the object, the contexts
in which it is used, the touch, the taste, the smell, the super-
ordinate and sub-ordinate categories to which it is linked, etc.

The fact that an observation activates many different con-
cepts in our brains calls for a representation that incorporates
interactions between individual concepts such that they are
able to activate one another. This is now widely accepted in
the literature - see, e.g., [9], [13], [14]. For example, according
to Deacon [15], what makes human cognition unique is its
ability to form a web between lexical concepts, since this
ability enables us to perform symbolic manipulations over the
web itself:

“The symbolic basis of word meaning is mediated
[...] by the elicitation of other words (at various
levels of awareness). Even if we do not consciously
experience the elicitation of other words, evidence
that they are activated comes from priming and
interference effects [...]” (Quotation belongs to [16])

Similarly, Barsalou [17]–[19] notes:
“...[C]oncepts are not typically processed in isola-
tion but are typically situated in background settings,
events and introspections. When representing bicy-
cle, for example, people do not represent a bicycle in
isolation but represent it in relevant situations [...]
[P]eople situate concepts for the following reason:
if the brain attempts to simulate a perceptual experi-
ence when representing a concept, it should typically
simulate a situation, because situations are intrinsic
in perception. At any given moment in perception,
people perceive the immediate space around them,
including agents, objects and events present. Even
when people focus attention on a particular entity
or event in perception, they continue to perceive
the background situation - the situation does not
disappear.” (Quotation belongs to [17])

In this article, we take a similar stance, and study how a
web of concepts can be represented and formed by a humanoid
robot from its sensorimotor interactions with the environment.

II. CONCEPTS, WEB OF CONCEPTS AND RELATED
STUDIES IN ROBOTICS

Below we briefly survey conceptualization theories and
existing studies on hierarchies or concept webs. Then, we
summarize our contributions in relation to existing findings
and the literature.

A. Theories of Concepts

Surprisingly, one can trace the discussion about the theories
of concepts back to Aristotle and Plato, in the times of Ancient
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Greeks. In Aristotle’s Hylomorphism theory, he stated that
substances have substantial forms and accidental forms. In
this view, substantial forms of a substance carry the essential
properties of the substance; i.e., they define what makes
the substance. On the other hand, the accidental forms of a
substance correspond to properties of the substance that can
change without becoming another substance.

Since Aristotle, many scientists have questioned what con-
cepts are and how they can be represented. Over the eras, the
following main theories have emerged:

• The Classical (Rule-based) View: The classical view
holds that categories are separated from one another with
strict boundaries, and membership of an exemplar to a
category is crisp (either yes or no - see, e.g., [20]).
An exemplar belongs to a category if it satisfies the
membership rules. As an example, an object is considered
a BIRD, if it satisfies the following rule for being a BIRD:

has wings(object) ∧ flies(object) ∧
lays eggs(object) ∧ has beak(object) ∧ · · · (1)

As an example, a sparrow can be considered a BIRD since
the rule in Equation 1 is true for a sparrow. However, the
rule-based view is believed to be inadequate in answering
certain questions. For instance, it fails to explain why a
sparrow is a more “typical” bird in our mind, although
both sparrow and, e.g., penguin are clearly birds [21].

• The Prototype View: The membership of an exemplar in
a category is decided by the similarity between the exem-
plar and the category prototype (e.g., [22]) The prototype
is the perfect exemplar for the category, and demonstrates
what an ideal member should be like. Memberships are
not crisp, so an exemplar might be a very typical member
of the category (indicated with a high similarity to the
prototype), or bear only marginal likeliness and yet be
regarded as a member. For instance, a sparrow may be a
very prototypical bird, while a penguin (which does not
fly) is still allowed as a marginal member. (See also [23]
for a geometrical interpretation of the prototype view.)

• The Exemplar View: The concepts are stored as a
collection of previously encountered exemplars that be-
long to the category. Therefore, rather than a single
prototype to check, a new exemplar is compared to all
the stored exemplars of the concept in order to determine
membership. It will be the case that more typical features
of the concept are implicitly represented through more
exemplars included, whereas outliers are still allowed via
a smaller number of exemplars. For instance, the BIRD
concept will be represented by many flying bird instances,
and a small number of non-flying ones.

There are advantages and disadvantages to each of these
views, for instance see [24] for a review. Moreover, there
exists abundant and contradicting evidence supporting each
of these claims. Of course given that categorization and
conceptualization are central to our thinking, perhaps we might
expect different strategies to be employed for different tasks
[25], which may also point towards an underlying hybrid
representation [26].

B. Grounding Concepts

Having stated the three main schools of thought on concepts,
we now present a number of approaches related to their
specific implementation. A major question is what achieves
the connection between the concepts in our minds, and our
actual sensory-motor experiences in the world. As Harnad [1]
points out, symbols that are formed by mere manipulation
of other symbols, without being rooted in atomic entities,
will not be useful for making sense of the world. A widely-
accepted explanation is the embodiment of the agent [3], [5]–
[7], [27]–[32]. Being embodied and situated, we experience
the world in terms of sensory and motor interactions. These
experiences constitute the internal meanings we attribute to
concepts. An example is Barsalou’s acclaimed Perceptual
Symbol Systems hypothesis [2], suggesting that perceptual
input triggers bottom-up patterns of activation in sensorimotor
regions in our brains, which are then partially reactivated
through top-down mechanisms over the association cortices
in order to simulate (perceptual) symbols. Therefore, these
distributed but connected brain areas work together to imple-
ment a basic conceptual system that leads to the emergence
of categorization, propositions, and abstract concepts.

Steels [33] has approached the problem from a functional
point of view with his Recruitment Theory of Language. His
idea is that language abilities are not formed over dedicated
and isolated language areas, but somehow “piggyback” over
relatively more primitive cognitive functions. In this scenario,
different cognitive modules are recruited arbitrarily for use
in communication, with the ones that prove efficient (i.e., by
increasing the linguistic power) being kept through develop-
mental stages. In this sense, any region that contributes to
the formation of concepts, thereby facilitating interpersonal
communication, could have been utilized. Perhaps the most
obvious ones, in keeping with Steels theory, would be the
primary sensory and motor cortices.

So how does a community reach a common language, in
which specific things are considered as instances of the same
concept? In [6], Cangelosi devises an environment in which
a number of agents evolve together, developing sensorimotor
capabilities and related language tools. In time, they gain the
ability to communicate to each other the necessary information
to find food, such as which items are edible, where they
are located, etc. In the course of developing this mode of
communication, they necessarily ground the labels in their own
sensorimotor experiences. Moreover, these conceptualizations
can be transferred from a teacher to a student. Belpaeme and
Morse [34], in an attempt to explain how young children learn
concepts, compare cross-situational learning of concepts with
socially guided learning, to show both are feasible, yet social
learning is more efficient. Meanwhile, from a different point
of view, Hashimoto and Masumi [35] show that concepts
can form as attractors in a dynamic system. The transitions
between these attractors correspond to the manipulation of
symbols in everyday language use. (An interesting point is that
they did not find any regularities in the transitions, therefore
this system has no explicit “syntax”.)

The grounding and conceptualization of nouns and adjec-
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tives, which are “object classes” and “object properties”, are
rather intuitive and well-studied (see for instance [36], [37]);
whereas an organized attempt towards the conceptualization
and especially generalization of behaviors into verbs is com-
paratively recent in the literature. We have in our previous
work [38], as well as Rudolph et al. [39], proposed that
behaviors can be generalized, and thus defined, in terms
of their effects. The effects provide a generalization over a
rather continuous space of actions, which can be virtually
indistinguishable in the real world. Take, for instance, a request
to “pass the salt”, in which one can use either the left or the
right hand, and can manipulate the salt shaker with either a
power or a precision grasp. Regardless of the variations, the
same command is realized in all these scenarios.

C. Structural Representation in Humans

In a parallel vein, numerous neuroimaging and modeling
studies have tried to unveil the exact representation scheme and
foci of conceptualization in the human brain. To date, perhaps
the most widely-accepted of these theories is the notion of
highly-connected webs of modality-specific cortices in the
brain, which are activated together in a controlled manner
to represent a concept [9], [13], [14], [40], [41]. The initial
proposal is in fact quite old, credited to Wernicke and Meynert
(see for instance [42] and [43] for a detailed discussion). They
have proposed that concepts are made of modality-specific
engrams, which reside in their corresponding primary sensory
or motor cortices. Since these engrams are fully connected, any
hint of the concept, be its name, sound, or taste, would alight
the whole web, bringing into mind the holistic knowledge
about the concept.

The popularity still claimed by this view is no doubt
due to the voluminous neuroimaging evidence collected in
the meanwhile, and firmly supporting the fully-connected-
web theory of concepts. Goldberg et al. [14] and Kellenbach
et al. [40], for instance, have conducted systematic experi-
ments demonstrating modality-specific cortex activations dur-
ing semantic retrieval and decision-making tasks. Goldberg
et al. found that retrieval of tactile knowledge activates the
somatosensory, motor, and premotor cortices, while flavor-
related knowledge activates the orbitofrontal region, visual
information the ventral temporal cortex, and auditory informa-
tion the superior temporal sulcus [14]. Kellenbach et al. [40]
similarly showed enhanced posterior inferior temporal cortex
activation for color judgments, posterior superior temporal
gyrus activation for sound judgments, and right medial parietal
cortex activation for size judgments. Moreover, similar results
are found outside of the sensory domain as well. In his famous
work, Pulvermuller demonstrated that motor and premotor cor-
tices activate somatotopically during language use, specifically
tongue-related area (peri-sylvian) showing activation when
the subjects are reading the word “lick”, finger-area (lateral)
for “pick”, and foot-area (dorsal) for “kick” [9], [13]. The
somatotopy discovered is important in terms of implying a
systematic activation of the motor and premotor areas in a
category-dependent manner. Chao and Martin [44] have also
conducted a tool viewing-and-naming task to show selective

activation in left ventral premotor, as well as left posterior
parietal cortex. These findings especially make sense when
considering that grasping a tool for using it is an integral part
of the tool concept, therefore spatial and motor areas are highly
relevant to its semantics.

Recently, very strong support for concept web theories
has also come from a predictive study [45]. Mitchell et al.
showed that it is possible to predict the fMRI activation
for complex words, such as celery, by superposing known
fMRI activations from a previously determined set of 25 basic
words. These basic words include eat, taste, see, hear, smell,
manipulate, touch, say, and move, and interestingly, can simply
be added together, each multiplied with a weight of its own co-
occurrence with the target word in a large text corpus. These
findings also support the representation of concepts through a
combined web of other concepts.

Given these findings, it is not surprising that many the-
ories on the neural implementation of concepts focus on a
connected-web-of-cortical-areas basis (For instance see Pul-
vermuller [13], Damasio [41], Bryson [32], and Deacon [15]).
It is indeed widely held that conceptualization is highly
distributed in the brain with the primary areas as its modality-
specific pillars. The elegance of this theory is its simplicity in
seamlessly integrating both initial experience and subsequent
retrieval. (Note also the relevance with [2] and [33].)

Still though, a number of studies have started to question if
this is the whole story [43], [46]–[48]. Their focus is whether
a connected web of primary cortices is enough to represent
concepts, or if there is a dedicated region that orchestrates
and connects these low-level cortex activations into a coherent
concept meaning. Damasio in [41] and [49] hints a related
idea when he mentions high-level, amodal convergence zones,
from which the time-locked activation in primary cortices is
orchestrated. Lambon Ralph [43] and Patterson et al. [46] build
their theories on the lesion (and later neuroimaging) studies
of Semantic Dementia (SD), a selective and progressive form
of dementia, in which the semantic (categorical) knowledge is
lost, with other cognitive abilities remaining intact. Quoting
an instance recounted by Patterson et al. in [46]: “When we
asked one of our patients to name a picture of a zebra,
she replied: ‘It’s a horse, ain’t it?’ Then, pointing to the
stripes, she added, ‘But what are these funny things for?’”
In the case of semantic dementia, primary cortices and their
association areas are intact, therefore the patient can decide the
shown picture is a horse-like animal. Moreover she can also
detect the stripes visually. However, the concept of a zebra is
lost in her mind, therefore she converges on the next close
concept that is still available. Another of their examples is
a patient (who is competent in all other cognitive facilities)
asking, “What are those things?” to a herd of sheep. This
unusual form of dementia is connected to the degeneration
of Anterior Temporal Lobe (ATL) by various studies (see
for instance, [50]–[52]. Kellenbach et al. also recount an
unexpected activation in ATL in a semantic task, which was
not specifically searched for in the study, but is meaningfully
accounted for in this hypothesis [40]).

The hypothesis proposed by Lambon Ralph [43] and Patter-
son et al. [46] is then whether ATL is a kind of “semantic hub”,
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connecting the widespread web of concept into a meaningful
entity. Their foundation is the often complex and nonlinear
boundaries of concepts. They discuss that, although concepts
are collections of features, these features usually bind together
in nonlinear and complex ways. One example suggested by
Lambon Ralph et al. [48] is the case of a single-layer neural
network vs. a NN with a hidden layer. The single layer neural
network can only bind together linear features, and is therefore
unable to classify certain functions. However, one additional
layer of representation allows the generation of any function.
The progressive nature of semantic dementia also allows for
such a test. Lambon Ralph [43] and Patterson et al. [46] tested
their hypotheses by checking the categorization capabilities
of mild and severe semantic dementia patients. They show
that, SD patients show under- and over-generalization mistakes
when categorizing relatively non-canonical objects (camels
with humps, pumpkins as vegetables, etc.) These mistakes are
even more prominent in severe SD, where patients tend to
ignore all features of objects that are not prototypical of their
category. (For instance, drawing ducks as if having four legs,
as is typical of the animal category [46].) These interesting
findings also suggest that conceptualization is a complex and
core cognitive function that needs more investigation.

D. Structural Representation in Robotics

Concepts and their representation have inspired numerous
computational and robotic studies as well, some of which try to
unveil the mystery by presenting testable models, while others
mainly aim to solve the perennial learning and adaptation
challenge in robots. One of the most organized attempts of
formalizing concepts for use in robotics came in the form of
a knowledge processing framework, KNOWROB, proposed
by Tenorth and Beetz [53], [54]. Their main point was to
develop a system which can process information as efficiently
as humans do, by filling in the gaps in conversation with
background knowledge. The system can connect to external in-
formation sources, such as the Internet or dedicated databases,
and possesses manipulators with which it can utilize accessed
unformatted information in various tasks freely. Information
is kept unformatted (“virtual”) until it is needed, and then can
be searched freely for associations. Concepts in KNOWROB
can be objects, actions, events, or places, and are organized in
a hierarchical manner with more specific concepts inheriting
from more general ones. Multiple inheritance is allowed,
which enriches membership definitions. Actions are defined
as recipes, events as change of states, and all of these are
inherited from a general “thing” entity, which is the common
ancestor of all nodes (object, action, event, or place) in the
ontology. Later on, this system was extended by Palmia [55]
with the aim of mutual understanding and cooperation between
multiple robots. Another notable example is the utilization
of syntactic bootstrapping [56], [57] for the robot to learn,
from conversations with humans and online images depicting
events, which actions can be used on which kinds of objects,
effectively generalizing objects with respect to actions in the
process. This approach allows the robots to conduct flexible
reasoning on huge amounts of data acquired from the Internet,

as well as to perform error handling and/or guide the super-
visor by asking questions if necessary.

On the other side of the fence, there are studies which aim
to close the gaps in what we know of human cognition. Baxter
et al. [58] propose a connected developmental architecture of
conceptual memory. The membership of instances to concepts
are defined in terms of the Euclidean distance of all features
to the concept prototypes. They also learn associative links
between different feature spaces in a developmental manner,
reminiscent of Hebbian learning. (However, these associative
links connect only different modalities of the same concept,
and not different but semantically related concepts.) In yet
another attempt to bring together different modalities, Morse
et al. [59] use the “body” of an agent as a “hub” to connect
the visual, auditory, and spatial information, enabling the
grounding of concepts such as red and cup. [37], [60]–[62]
use the formalization of affordances to ground actions.

Another prevalent approach for conceptual representation
in robotics is assuming that concept formation occurs in an
incremental manner in the form of a hierarchical structure;
i.e., a hierarchical representation is assumed of concepts [63]–
[66]. In this hierarchy, upper concepts represent the general
concepts, whereas lower or terminal concepts refer to the
specific properties or instances. The connections imply is-a
type relations between concepts. Instances can be placed into
lower or terminal nodes. The tree structure of the hierarchy
also provides an option for branching. Top-down classification
of instances depends on selecting the best branch or set of
branches to go deeper in a tree, similar to Quinlan’s decision
tree approach [67]. One of the earliest attempts is the Ele-
mentary Perceiver And Memorizer (EPAM) model [63], [64],
which holds nodes with attribute-value pairs in a tree structure.
Each edge coming out of a node represents a certain value for a
comparison criteria. Leaf nodes correspond to specific images
of instances. EPAM makes a distinction between classification
and prediction tasks as two different processes. This model
was later extended by UNIversal MEMory (UNIMEM) [65]
to include confidence and feature frequency statistics, nominal
values and images in non-terminal nodes. COBWEB [66]
has been inspired by these models, as well as CYRUS [68],
and introduced an evaluation function which rewards intra-
class similarity and inter-class dissimilarity. Finally, CLASSIT
[64] enhanced COBWEB by including mean and standard
deviation values for attributes. The common point in all these
hierarchical methods is that they use the hill-climbing search
method and each concept node has its own attribute-value
pairs.

The common missing point in all these works is the lack of a
global structure of associativity. The connections are restricted
to joining either different modalities of the same concept, or
a group of concepts stemming from the same ancestor, such
as “cup” as a container, and “glass” as another container.
Yet, none of these models present a feature of long-distance
associativity between seemingly different, but semantically
related concepts, such as “water” and “glass”, which should
be related by means of the “drinking” action. Moreover, the
concepts these studies are generally not grounded: They rely
on either ontologies or Internet-based information, or a hand-
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Fig. 1: A schematic presentation of the concept web, which
connects related concepts to each other and to their counter-
parts in the language, action, and perception spaces. Informa-
tion can flow in from the perception space, through a feature
extraction mid-level, or from the language and action spaces
as well. A number of nodes are randomly illustrated in white
to exemplify active concepts.

designed set of features. Therefore, they lack extendibility and
verifiability from a developmental point of view [31].

E. Contributions of the Current Study

The contribution of our study is the modeling of a grounded
concept web on a humanoid robot. The web consists of
adjective, noun and verb concepts that are abstracted from
the sensorimotor interactions of the robot. These concepts are
connected to each other via is-a type relations, as well as to
language, action, and perception. These inter-concept relations
are extracted from the interactions of the robot, allowing it to
observe co-occurrences between the concepts through these
interactions (Figure 1). From our previous analysis in [69],
we expect this kind of dependency information to be useful
when trying to make sense of the complex real world.

Modeling the concept web requires a multi-label classifi-
cation problem and our approach to this is a probabilistic
one: We use Markov Random Field (MRF) to model the web
and the inferences are made using Loopy Belief Propagation
(LBP). Our choice for MRF and LBP is due to: (i) The natural
resemblance between an MRF and a concept web. In MRF,
there are nodes that are fed observations and the nodes regu-
larize other nodes using links between them. This is exactly
the requirement for a concept web, which needs to be linked
to the perceptual input, and which must spread activation
between the concepts. Such a representation will be able to
employ the dependency information between the concepts. (ii)
The hypothesis that our brains are biological machines that
might be encoding information as probability distributions and
function using probabilistic inferences (see, e.g., [70], [71]).
In fact, it is known that we use probabilistic and statistical
mechanisms for language learning and understanding [72]–

Fig. 2: The experimental setup consisting of the iCub and the
Kinect Depth Camera.

[75]. Our approach is in line with findings in Psychology and
Neuroscience, which strongly support the philosophical con-
cept web hypothesis by contemporary imaging evidence [9],
[13], [14], [40], [45], demonstrating the possible neurological
mechanisms for a web structure in the brain. (iii) The ability
of MRF to support inference on highly cyclic structures, which
is the case in our system due to the densely connected nature
of concepts.

Our study is unique in robotics since, even though there are
concepts and structured concepts used in robotics studies (as
reviewed above), they are hierarchical, hand-designed and usu-
ally not grounded. We, on the other hand, focus on modeling
the concept web, starting from low-level sensorimotor data,
constructing concepts from interactions, and linking those
concepts using co-occurrences between concepts in order to
build a web of concepts.

An earlier version of this work was published in a con-
ference [69], where our focus was only on whether co-
occurrence between nouns and adjectives can improve their
prediction accuracies. For the sake of completeness, we also
present the extraction process and the representation of in-
dividual concepts in our system, using a prototype scheme
developed in previous work [38], [69], [76]. However, this
specific representation of individual concepts is not central
to the contributions of this study, and it can be replaced
with any other representation or categorization scheme with
no loss of generality. The learning of a concept web from
the inter-relations of individual concepts, and showcasing the
advantages of using such a representation in different scenarios
are the main contributions of this study.

III. EXPERIMENTAL SETUP

We perform our experiments on the iCub humanoid robot
platform (Figure 2) [37]. A Kinect device is used to allow
iCub to perceive the world and the objects. The 3D point cloud
acquired from the Kinect device is processed using the Point
Cloud Library (PCL) [77]. The tactile information is collected
from the pressure sensors of iCub, placed on each fingertip.
Finally, for audio information, we use an external microphone
attached to iCub’s belly, which allows us to acquire only the
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(a) Hard (b) Noisy (c) Tall (d) Thin (e) Round

(f) Soft (g) Silent (h) Short (i) Thick (j) Edgy

Fig. 4: Objects for each adjective category

(a) Balls (b) Boxes (c) Cylinders

(d) Cups (e) Tools (f) Plates

Fig. 3: Objects for each noun category.

relevant audio signal and skip dealing with the noise coming
from iCub itself.

A. Objects

We have in total 60 objects, arbitrarily divided into a
training (45 objects) and a testing set (15 objects). Each
object is labeled with one of the 6 noun groups {box, ball,
cylinder, cup, plate, tool} (Figure 3), and 5 adjectives out
of 5 dichotomic pairs: {hard × soft, noisy × silent, tall ×
short, thin × thick, round × edgy} (Figure 4). The mappings
between nouns and adjectives are not necessarily 1-to-1, but
are semantically sound, e.g., a box can be either tall or short,
but it is always edgy. An object cannot be defined with two
conflicting adjectives (e.g., both thin and thick) at the same
time.

In our framework, since the web is constructed based on co-
occurrences, the co-occurrences of concepts explicitly affect
our noun and adjective predictions. The co-occurrence values
for our dataset are shown at Table I.

B. Behaviors

The robot is equipped with 13 behaviors: push left, push
right, push forward, push backward, move left, move right,

TABLE I: The frequencies of instances in the dataset in which
specified noun and adjective pairs co-occur together (out of 60
objects in the dataset).

Hard Soft Noisy Silent Tall Short Thin Thick Round Edgy
Box 2 14 2 14 0 16 0 16 0 16
Ball 3 7 7 3 0 10 1 9 10 0
Cylinder 14 0 5 9 10 4 9 5 14 0
Cup 11 0 1 10 0 11 0 11 11 0
Tool 5 0 5 0 5 0 0 5 5 0
Plate 4 0 0 4 4 0 0 4 4 0

TABLE II: Possible applicable set of behaviors with respect
to object categories. arg: Left, Right, Forward, Backward;
A:Applicable; NA: Not-Applicable

Push Move Drop Grasp Shake Knock down Throw(Left, Right, Forward, Backward) (Left, Right, Forward, Backward)
Box A A A A A A A
Ball A A A A A A A
Cylinder A A A A A A A
Cup A A NA A NA NA NA
Tool A A A A A A A
Plate A A NA A NA NA NA

move forward, move backward, grasp, knock down, throw,
drop, and shake.

To further investigate the connections between the objects
and the behaviors, we assumed that not all behaviors are appli-
cable to all objects. For instance, cups and plates are assumed
to be “fragile”, or possibly containing liquids, therefore they
cannot be shaken, dropped, thrown, or knocked down. The
list of allowable behaviors for each noun category is shown
in Table II.

C. Features and Data Collection

While collecting the data, we perform the following proce-
dures for each object o ∈ O:

1) Place an object o at a random initial position on the
table.

2) Store the initial visual features ev .
3) For each applicable behavior b ∈ B to object o (Table

II):
• Collect the initial visual features ebv for behavior b.
• Apply behavior b once.
• If behavior b is grasp, collect audio ea, haptic eh,

and proprioceptive ep features while the behavior
is in progress, and concatenate them with initial
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TABLE III: The visual, audio, haptic and proprioceptive
features extracted from the interactions of the robot.

Feature Type Feature Position
Position:(x, y, z) 1-3
Object dimensions:(width, height, depth) 4-6

Visual (ev) Object presence ∈ {1,−1} 7
Normal zenith histogram bins 8-27
Normal azimuth histogram bins 28-47
Shape index histogram bins 48-67

Audio (ea) 13 bins of MFCC (max - min) 68-80
Change for index finger 81
Min values for index finger 82

Haptic (eh) Max values for index finger 83
Mean for index finger 84
Variance for index finger 85
Standard deviation for index finger 86
Change for index finger 87
Min values for index finger 88

Proprioceptive (ep) Max values for index finger 89
Mean for index finger 90
Variance for index finger 91
Standard deviation for index finger 92

visual features ev to obtain entity feature vector
e = ev.ea.eh.ep.

• Collect the final visual features e
′b
v for behavior b.

• Obtain the effect feature vector for the behavior b
by f = eb

′

v − ebv .
• If the final position of the object is out of reachable

bounds, randomly reinitialize object position for the
next behavior.

From the interactions, we extract the features that are
listed in Table III. The first seven visual features come from
basic position information and three dimensional properties of
the object. The following 40 features come from the zenith
and azimuth normal vectors of each point on the object.
Shape index histogram bins, forming the majority of the
visual features, are created using the shape index property
of the object. Initially, the maximum and minimum principal
curvatures (Qmax and Qmin) of the object are calculated.
These two curvature measurements define the basic type of
a surface (e.g., saddle, plane, etc.). The shape index property
is directly dependent on these curvatures and is obtained by
Qmax+Qmin

Qmax−Qmin
.

From the raw audio data, we first extract the MFCC (Mel-
Frequency Cepstrum Coefficients) features. We chose MFCC
because it is widely used for sound classification (see, e.g.,
[78]). MFCC returns a 13-dimensional feature vector for every
21ms, and we use the difference between the maximum and the
minimum of all MFCC vectors for the audio signal extracted
from each object. The audio signal is collected during the
grasp behavior.

Haptic and proprioceptive features are obtained from the
index finger1 of iCub during the grasp behavior. For haptic
features, the first feature is the difference between the final
and the initial value of the tactile sensor. The second and
third features are the minimum and maximum of haptic values.
The following three features are mean, variance, and standard
deviation, for capturing the change of the haptic signal during
the interaction. The same features are extracted from the

1From our experience, this finger turned out to provide sufficient informa-
tion for detecting a grasp.

proprioceptive signals.
We refer to the combination of these features as the entity

feature vector, and denote it by e. In other words, e is the
concatenation of visual ev , audio ea, haptic eh and proprio-
ceptive ep features (Table III). For verb concepts, following
our previous work [38], we try to capture the change in the
visual features, which we refer to as the effect feature vector
(f). The effect feature vectors are obtained from the differences
between the final and initial visual features, i.e., f = e′v − ev .
See Figure 5 for an illustration of the entity and effect feature
vectors.

IV. INDIVIDUAL CONCEPTS

Our experimental framework corresponds to a world in-
habited with three kinds of concepts, namely noun, adjec-
tive, and verb concepts. Let the set of concepts be denoted
C = N ∪ A ∪ V, with the set of noun concepts N ={box,
ball, cylinder, cup, plate, tool}, the set of adjective concepts
A ={hard × soft, noisy × silent, tall × short, thin × thick,
round × edgy}, and the set of verb concepts V ={push left,
push right, push forward, push backward, move left, move
right, move forward, move backward, grasp, knock down,
throw, drop, shake}. As a first step, the robot needs to identify
these concepts from its interaction with the world, so that it
can impose some structure to its environment. For identifying,
and then representing individual concepts, we use a prototype
scheme developed in [38], [69], [76], and demonstrated in [79]
to be comparable in terms of performance to a number of
widely used approaches, including Support Vector Machines,
Self Organizing Maps, AdaBoost, etc. For completeness, we
present the details of this representation, although it is not an
original contribution of this paper. An alternative approach
could as well be used for representing individual concepts
without fundamentally changing the framework proposed in
this article.

A. Conceptualization of a Category

We define concepts by their prototypes (see Section II-A
for theories of concepts) following our previous work on
prototype-based conceptualization of verbs, nouns and adjec-
tives [38], [69], [76]. The prototypes are extracted from the
training instances, which are labeled with human supervision
a priori. Each training instance is labeled with exactly 1 noun
label and 5 adjective labels (i.e., one of the two antonyms in
each pair). In addition, each behavior is applied once to every
allowed object, and this interaction is labeled with the related
verb concept. Inter-behavior variances are allowed in order to
capture the generic effect of the behavior, e.g., the objects are
initialized to an arbitrary position before the interaction.

The prototypes are designed to indicate the contribution of
each feature to the concept. The noun and adjective prototypes
are extracted from the entity features vectors e of the training
data; the verb prototypes are extracted from the effect feature
vectors f of the interactions. Features that contribute consis-
tently positively to the concept are indicated with a ‘+’ sign
in the prototype. Similarly, features that contribute negatively
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Fig. 5: Extraction of the entity and effect feature vectors. ev and e′v are the visual features of an object before and after a
behavior is applied. f = e′v − ev is the effect feature vector. e is the multi-modal entity feature vector, composed of visual,
haptic, proprioceptive, and audio information.

TABLE IV: Extracted prototypes for noun, adjective and verb concepts.
Concepts Visual Features Audio Features Haptic Features Proprioceptive Features

Nouns

Box ++-+-+-+----+----------------------------*----+---------------++--- ------------* *-*--* ******
Ball ++------+++-----------------------------+--++------------------++++ *------------ --+--- ******

Cylinder +++--------*+-----------------------------++++----------------++--- *******--**** +***** -+++--
Cup ++-+-+-----++-----------------------------++++----------------+---- *-*-*---*-*** +----- -+++--
Plate *+++++--+-+--+*-------------**------*--**--+-*----------------+++-- -----------++ +----- -***--
Tool **+++---+---+-------------------------------+++---------------++--- ++++++++++**+ +----- -+++--

Adjectives

Hard ++++++--+--++-----------------------------++++----------------++++- ******++++*** +**+-+ -+++--
Soft ++-+-+-++-+++--------------------------++++++-+---------------*+**+ +-+-+-+-+-+-+ +-+--* ++++++

Noisy *+*+++-+*+++*--------------++-----------+++++++---------------****+ ++++**++*++** +-+--+ ******
Silent *++++*-*+--+*--------------------------++*+*+++---------------*++++ ----+---++-++ ***++* ******
Short ++---+-**--**----------------------------*-+**----------------++*** ***-*---*-*** +-*--* *+++**
Tall +++*+*-----*+*-----------------------------+++----------------++--- ************+ +***** -+++--

Thick ++*+*+-**--**----------------------------*-++-----------------*+*** *********-*** +-*-** ******
Thin +++--------*+-----------------------------++++----------------++--- **--***-***** +***-- -+++--
Edgy ++-+-+-++--++--------------------------*-++---+---------------+++-- ------+-+-+-* +-*-** ******

Round ++++++--*--+*-----------------------------++++----------------***** ******++++*** +**+-+ ******

Verbs

Grasp 00+-0-*--000+00------------0-----000-00--0----0---------------00+++ None
Knock Down 0+0000+0-000000------------0-----000-00--0----0---------------+++++ None

Move Left 0-0000+0-000+00------------0-----000-00--0-00-0---------------+++++ None
Move Right 0+0000+--00+++0------------0-----000-00--000--0---------------+++++ None

Move Forward -00000+--000++0------------0-----000-00--000000---------------+++++ None
Move Backward +00000+0-00++00------------0-----000-00--000--0---------------+++++ None

Push Left 000-0-*0-000+00------------0-----000-00-------0---------------+++++ None
Push Right 0+0000+--00+++0------------0-----000-00--000-00---------------+++++ None

Push Forward -00000*--000+00------------0-----000-00--0----0---------------+++++ None
Push Backward +00-0-*0-000+00------------0-----000-00--00---0---------------0++++ None

Drop ***-00*0-000000------------0----0000-00--0----0---------------00+++ None
Throw *0*000*0-000+00------------0-----000-00--0----0---------------0++++ None
Shake 000000*0-000000------------0-----000000--0-00-0---------------0++++ None

are indicated with a ‘-’ sign, and those whose contribution
show too much variation are denoted with a ‘*’. For noun and
adjective concepts, ‘+’/‘-’ indicates characteristically high/low
values for the associated dimension, whereas ‘*’ indicates
irrelevant features that can be discarded from the compar-
isons regarding the concept. Meanwhile, for verb concepts,
‘+’/‘-’ indicates characteristically increased/decreased features
through the application of the behavior, while ‘*’ indicates the
changes induced on that dimension are inconsistent. Verb pro-
totypes also include an additional marker ‘0’, which indicates
that the feature is not changed significantly by the behavior.

The contributions of each feature are decided by clustering
for each concept the mean and variance values of the feature.
The mean and variance values are decided regarding the
features of all the training instances that are labeled with
the specific concept and normalized to allow meaningful
comparison. The features are then clustered in the mean-
variance space using Robust Growing Neural Gas (RGNG)
algorithm [80], which gives the features with (1) high mean
and low variance, thereby labeled with ‘+’ in the prototype,
(2) low mean and low variance, thereby labeled with ‘-’, and
(3) high variance, thereby labeled with ‘*’. For verb concepts,
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marked with a low mean and low variance distribution, are assigned a ‘-’ sign, whereas those with high variance are marked
with a ‘*’ to indicate inconsistent contribution. Sample features are illustrated for the hard concept.

Algorithm 1 Derivation of a concept prototype from associ-
ated training instances (Adapted from [38]).

for all concepts c ∈ C do
for all feature dimensions d do

Compute the mean µcd:

µcd =
1

N

∑
i∈I(c)

id, (2)

where I(c) is the set of training instances of concept c, with
cardinality N = |I(c)|, and id is the dth feature of instance i.

Compute the variance σ2
cd:

σ2
cd =

1

N

∑
i∈I(c)

(id − µcd)2. (3)

end for
Concatenate µcd’s and σ2

cd’s to obtain the vectors µc and σ2
c .

end for
for all concepts c ∈ C do

Apply Robust Neural Growing Gas algorithm in µc × σ2
c space:

if c ∈ N ∪ A then
- Manually assign one of the labels ‘+’, ‘-’, or ‘*’ to the dimension
d, considering the cluster that d falls into:
if cluster is high on µ axis and low on σ2 axis then

assign ‘+’ to d
else if cluster is low on both µ and σ2 axes then

assign ‘-’ to d
else if cluster is high on σ2 axis then

assign ‘*’ to d
end if

else
- Manually assign one of the labels ‘+’, ‘-’, ‘*’, or ‘0’ to the
dimension d, considering the cluster that d falls into:
if cluster is high on µ axis and low on σ2 axis then

assign ‘+’ to d
else if cluster is low on both µ and σ2 axes then

assign ‘-’ to d
else if cluster is close to 0 on µ axis and low on σ2 axis then

assign ‘0’ to d
else if cluster is high on σ2 axis then

assign ‘*’ to d
end if

end if
end for

negligible mean value and low variance combination is labeled
with ‘0’. Figure 6 demonstrates a sample clustering and
labeling case for the hard concept. The exact procedure is
depicted in Algorithm 1, and prototypes extracted and used in
this study are shown in Table IV.

B. Category Prediction from Prototypes Only

The prediction procedure takes as input the above prototypes
of concepts and the feature vector (e or f) of a new object or an
interaction, denoted with an x. When evaluating membership
for a concept, only meaningful features (which are labeled
with ‘+’, ‘-’ or ‘0’ in the corresponding prototype) are consid-
ered. On these meaningful dimensions, the Euclidean distance
to the mean values of the concept’s prototype is calculated as
follows:

D(c,x) =
1

|Rc \ R?
c |

√ ∑
i∈Rc\R?

c

(eix − µi
c)

2
, (4)

where x is the new instance,Rc is the set of all feature indices,
R?

c is the set of indices that are ‘*’-signed (i.e., inconsistent)
for concept c; |.| is the cardinality measure, eix is the ith feature
of instance x, and µc is the mean feature vector of training
objects labeled with concept c.
D(c,x) is the closeness of the new instance to the selected

concept. We can convert it to the probability estimate of
instance x belonging to the concept c as follows:

sperc(c,x) =

∏
r∈Ci\{c}

D(r,x)

∑
r∈Ci

 ∏
rt∈Ci\{r}

D(rt,x)

 , (5)

where Ci ⊂ C is either the set of nouns N = {box, ball,
cylinder, cup, tool, plate}, the set of one dichotomic pair of
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Fig. 7: A snapshot of the concept web iCub has constructed. Connections between related concepts are denoted with gray
links. Noun concepts are indicated with red, adjective concepts with blue and verb concepts with green. The graph is created
using Ubigraph graph visualization library [81]. [Best viewed in color]

adjectives e.g., Ap = {hard, soft}, or the set of verbs V =
{push left, push right, push forward, push backward, move left,
move right, move forward, move backward, grasp, knock down,
throw, drop, shake}. Note that this calculation normalizes the
belonging probabilities among each concept group. Another
important point is that sperc(·, ·) depends only on the features
extracted from the instance, and does not utilize information
about the co-occurrences of the concepts.

V. A PROBABILISTIC WEB OF CONCEPTS

In the previous section, we described the conceptualization
of individual categories. In this section, we discuss how we
represent the concept web in a probabilistic model, namely,
Markov Random Field, which is especially suitable for our
purposes due to its ability to conduct inference on densely con-
nected graph structures. Each node of the constructed Markov
Random Field corresponds to a concept (noun, adjective, or
verb) in our web.

A. Building a Web from Individual Concepts

With C = N ∪ A ∪ V the set of all concepts, let us denote
W to be the concept web constructed from the interactions of
the robot. The web W can be represented as a graph G(C,E),
where each concept c ∈ C is treated as a node in W .

The edges E are established based on the co-occurrences
of the concepts. Namely, an edge E(ci, cj) ∈ E, between
concepts ci and cj , is placed in the web if ci and cj have
co-occurred in an interaction. The web constructed from the
interactions in this study is visualized in Figure 7.

(a) A 2D Markov Random Field (b) A maximal clique
in an MRF with 5
nodes

Fig. 8: (a) A sample 2D Markov Random Field. The Marko-
vian property holds in Markov Random Fields, by which a
random variable (i.e., the black node), given its immediate
neighbors (the gray nodes), is independent of all other random
variables. (b) A maximal clique (with 3 nodes) is indicated in
an MRF with 5 nodes.

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔

Fig. 9: Sample Markov Random Field chain of variable nodes.

B. Markov Random Field

Markov Random Field (MRF) [82] is a probabilistic graphi-
cal model widely used for defining constraints on and between
entities in a problem. The entities are represented as nodes and
the constraints between the entities are incorporated by the
edges connecting them. MRF follows the Markovian property
that the state of a node depends only on the neighboring
nodes (Figure 8a). Due to these representational constraints,
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all probabilistic functions are defined over maximal cliques. A
clique is a subset of nodes that are connected to each other
directly, and a maximal clique is a clique with the highest
number of nodes possible (Figure 8b).

An MRF effectively models the following joint probability
distribution:

P (ω) =
1

Z
exp(−U(ω)), (6)

where ω ∈ Ω is a possible configuration of the web W , U(ω)
is the energy function of the MRF given a configuration ω,
and Z is the normalizing partition function defined over the
set of all possible configurations Ω:

Z =
∑
ω∈Ω

exp (−U(ω)) (7)

The energy function U(ω) is in turn defined as the combination
of a data term and a smoothness term:

U(ω) = Udata(ω) + Usmooth(ω), (8)

where the data term, Udata(ω), asserts the consistency of the
configuration ω with the immediate measurements, while the
smoothness term Usmooth(ω) enforces consistency with the a
priori knowledge previously encoded into the MRF in the form
of clique connections.

C. Belief Propagation in MRF

The potential values in the MRF model demonstrate the cor-
relation between two connected nodes. In belief propagation
methods, this correlation is thought of as a message from one
node to an adjacent one. To demonstrate belief propagation, let
us calculate the marginal probability distribution over a node
(x3) for the MRF in Figure 9:

p(x3) =
1

Z

∑
x2

ψ(x2, x3)
∑
x1

ψ(x1, x2)
∑
x4

ψ(x3, x4)∑
x5

ψ(x4, x5)
∑
x6

ψ(x5, x6). (9)

If we treat the terms in Equation 9 as messages from the
adjacent nodes of query node x3, then we can re-formulate it,
merging these messages as follows:

p(x3) =
1

Z

[ ∑
x1,x2

2∏
i=1

ψ(xi, xi+1)

]
.

[ ∑
x4,x5,x6

5∏
i=3

ψ(xi, xi+1)

]
,

=
1

Z
µx2

(x3)µx4
(x3), (10)

where µx2
(x3) is the message to x3 from x2, and µx4

(x3) is
the message for x3 from x4.

D. Inferences in Concept Web Using Loopy Belief Propaga-
tion

Our concept web W is a cyclic graph by definition, and
therefore, making exact inferences given observations is not
possible. For such problems, approximate solutions are used,
and a widely-used method for this task is Loopy Belief Propa-
gation (LBP) [83]–[85], which iteratively updates the influence
of one variable (i.e., concept) on another until convergence.

The influence of one variable on another is called a message,
and this process is called message passing.

LBP re-factorizes the graph into separator nodes and clique
nodes - see Figure 10a for an example. Clique nodes are shown
as elliptic nodes, whereas separator nodes are symbolized with
square nodes. Separator nodes are in fact the concepts in the
web, whereas the clique nodes represent the potential of a
clique as a single node.

The message passing procedure in LBP differs in many
ways when compared to standard belief propagation. For
instance, the graph is divided into sub-trees, each of which
includes one clique node and the separator nodes connected
to it (Figure 10b). After extracting the sub-trees, LBP performs
the following until convergence:

1) Update Clique Potentials: Updating the clique poten-
tials can be thought as message passing from connected
separator node to the clique node. Therefore, we can
compute the new potentials by multiplying the potentials
of separator nodes with the previous value of potentials
in the clique node:

V∗K (xK ) = VK (xK )
∏

xm∈ne(xK )

Vm(xm), (11)

where xK is the set of random variables in clique node
K , ne(xK ) is the set of neighboring separator nodes
of clique K , VK (xK ) is the previous potential of the
clique, and V∗K (xK ) is its updated potential.

2) Update Separator Potentials: After updating the clique
potentials, we apply the message passing in the reverse
direction. This time, updating the separator potentials is
different from updating the clique potentials in that the
message from the updated clique node to any one of the
connected separator nodes is calculated by summation
of the potentials of the clique nodes except the separator
node:

µK ∗→xm
(xm) =

∑
xn∈xK \xm

V∗K (xn). (12)

If the potential of separator node xm has been updated
previously, the new potential value is the multiplication
of the previous node potential with the new message
from the clique node, divided by the previous one:

φ∗s(xm) = φs(xm)
µK ∗→xm

(xm)

µK→xm(xm)
. (13)

Otherwise, it is directly set to the new value:

φ∗s(xm) = φs(xm)µK ∗→xm
(xm). (14)

where µK ∗→xm
(xm) is the new message, µK→xm

(xm)
is the previous message, φs(xm) is the previous potential
of the separator node xm, and φ∗s(xm) is the updated
potential.

3) Iteration: The previous two steps are iterated for all
clique nodes and their separator nodes until the change
in the potentials is less than a threshold.
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Fig. 10: (a) The representation of an MRF graph as a LBP graph. (b) Divided sub-trees of the graph in Figure 10a.

input
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𝜓C

Fig. 11: A schematic visualization of the MRF energy formal-
ization of the concept web. The sum of individual concept
potentials ψc gives the data term, and the sum of clique
potentials ψK gives the smoothness term.

E. The Concept Web as a Markov Random Field

For formalizing the concept web as an MRF, we deffine the
energy function of Equation 8 as follows:

U(ω) = Udata(ω) + Usmooth(ω)

=
∑
c∈ω

ψc(c) +
∑

K ∈K

ψK (K , ω), (15)

with K denoting the set of all cliques, c is the set of all active
concepts in the given configuration ω, ψc is the potential of
each active concept c, and ψK is the potential of each clique
K. (See Figure 11 for a schematic visualization.) The data
term, expanded as Udata(ω) =

∑
c∈ω ψc(c) is responsible with

ensuring consistency with the raw perceptions of concepts.
Therefore, we define the concept potential ψc as:

ψc(c) = D (c,x) , (16)

with x being the incoming instance, and D (c,x) its distance
to the active concept c (Equation 4). The smoothness term,
Usmooth(ω) =

∑
K ∈K ψK (K , ω), asserts consistency with

a priori knowledge, which is encoded in terms of edge
information as mentioned in Section V-A. The frequently co-
occurring concepts are connected by edges, which determine
the clique structure of the web. The potential ψK of a clique

K can then be defined as:

ψK(K , ω) = V(xK ), (17)

where V(xK ) is the potential of a clique node consisting of the
random variables xK . Finally, through the above definitions,
the partition function Z becomes:

Z =
∑
ω∈Ω

exp

(
−
∑
c∈ω

ψc(c)−
∑

K ∈K

ψK (K , ω)

)
, (18)

where Ω is the set of all possible configurations. The optimal
configuration ω∗ is then given by arg minω U(ω), obtained
through the Loopy Belief Propagation procedure detailed
above (Section V-D).

VI. EXPERIMENTAL RESULTS

The concept web built from the interactions of iCub is
provided in Figure 7. In this section, we demonstrate how
this concept web can be helpful for a humanoid robot in three
different scenarios: (i) a scenario where the relevant concepts
in the web are activated based on perception of an object, (ii)
a scenario where the relevant concepts in the web are activated
based on a partial perception of an object, with an intended
action in mind, and (iii) a scenario where the activation is due
to only an intended action in mind, without any specific object
singled out.

A. Scenario 1: Perception-driven activation of concepts in the
web

In this scenario, iCub is presented with an object, allowed
to interact freely with it, and expected to guess what kind of
an object it is. It needs to guess both the type of the object (the
noun), and its properties (the adjectives). Furthermore, iCub is
expected to predict the verbs (the behaviors) that are possibly
applicable to the object.

On perceiving the object, iCub first records its visual
data through Kinect, then grasps the object to collect haptic,
proprioceptive and auditory data (Section III-C). The related
features are combined in the entity feature vector e, and
compared against the previously extracted prototypes of nouns
and adjectives in order to determine the categories of the
object (Section IV-B). These predictions give us an a priori
guess about the membership probabilities. These a priori
probabilities are in turn used to initialize the activations of
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Fig. 12: Schematic presentation of Scenario 1. iCub is presented with a cup, allowed to interact with it freely, and expected to
predict the type and properties of the object, as well as what kind of behaviors can be applied on this object. The converged
concept web is depicted. The action space and verb concepts are contoured with green, whereas blue and orange colors represent
the noun and adjective categories for the object, respectively. The gray and smaller fonts show inactive concepts in the web,
while bigger fonts and colored nodes represent activated concepts. There are other concepts and connections that are not shown
for clarity. ML: Move-Left, MR: Move-Right, MB: Move-Backward, MF: Move-Forward, PL: Push-Left, PR: Push-Right, PB:
Push-Backward, PF: Push-Forward. [Best viewed in color]

the nodes in the concept web (Note that the concept web
architecture, i.e., the connections between the nodes and their
joint probabilities, have been determined previously using the
training data). Nodes of the unobserved concepts are initialized
to 0.5 probability in an unbiased manner. Afterwards the
concept web is allowed to propagate its activations. Once
convergence is achieved, we expect iCub to (1) refine its initial
guesses about the noun and adjective categories of the object,
possibly correcting wrong ones, and (2) determine which be-
haviors are applicable to the object, by propagating activation
through the noun and adjective concepts to connected verb
concepts.

A sample scenario is presented in Figure 12. A cup is
presented to iCub in this case, which iCub correctly detects as
a cup, and as being round, short, hard, silent, and thick. It also
predicts that it can apply the grasp behavior on the object, as
well as move and push behaviors. The rest of the behaviors
(knock down, shake, throw and drop) are not found applicable
to the object.

This scenario depicts the activation of the concept web in a
similar fashion to the canonical neurons in the F5 area of mon-
key brain [86]–[88]. These “visiomotor” neurons are known to
fire selectively to certain actions, as well as to the presentation
of an object to which this action can be potentially applied.
This raw recognition of possible action (without necessary
recognition of the object per se) has been accepted as one
of the neurological mechanisms of affordances. The context
web approach also results in similar predictive activations in
the conceptual representations of the applicable behaviors.

We now apply this scenario systematically to present quan-
titative results in Table V. Six arbitrarily selected objects, one
from each noun category, are presented to the iCub, which
is then expected to guess its noun category and adjective
categories, and the applicable behaviors. To demonstrate the
effectiveness of the approach, the predictions made using the
concept web are compared to the prototype-only initial predic-
tions described in Section IV-B, as well as to that of Support
Vector Machines, and Support Vector Machines enhanced with
ReliefF [89] feature selection. 6 SVMs are trained separately
for both the ReliefF and the no-ReliefF cases, 5 of which
choose between one of two dichotomic adjectives (hard vs.
soft, edgy vs. round), and one is responsible with selecting a
noun concept (ball vs. box vs. cup vs. cylinder vs. plate vs.
tool). Both SVM and SVM+ReliefF cases achieved more than
90% training accuracy, with the exception of the no-ReliefF
noisy vs. silent case with a training accuracy of 82%. In the
ReliefF feature selection case, features with weights > 0.1 are
accepted, out of a range of [−1, 1].

Table V shows that the concept web predictions are signifi-
cantly enhanced for both the nouns and the adjectives, as com-
pared to the baseline methods. It is able to correct the wrong
predictions of the baselines; whereas for already correctly
predicted cases, the prediction confidences are increased. This
result is in line with our previous analysis in [76], [79], in
which we conclude that an approach which cannot utilize the
dependency information between concepts, such as the SVM,
SVM+ReliefF, and individual prototypes approaches, would
significantly be outperformed by those which can. Therefore,
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Fig. 13: Schematic presentation of Scenario 2. iCub is presented with a ball, and commanded to apply specifically the push
behavior on it. The activation enters the system from two different points: From the perception space, through the perceived
visual features only (haptic and audio information is not available since iCub is not allowed to grasp the object), and from
the push verb concept incoming through the language space. When the initially predicted activation has spread and converged,
iCub is now able to correctly guess the haptic (hard) and auditory (silent) properties of the object, which it could not access
before. Colored nodes denote activated concepts. Some concepts/connections are not shown for clarity. PL: Push-Left, PR:
Push-Right, PB: Push-Backward, PF: Push-Forward. [Best viewed in color]

TABLE VI: The predictions as corrected by the activation on the concept web, when there is no direct perceptual access to
certain features of the object. The iCub is not allowed to grasp the ball object, and therefore makes initial predictions using only
the available visual features (columns 2 and 3). The visual parts of the concept prototypes (i.e., features [1-67]) are used for
this comparison. These initial activations are then allowed to spread on the concept web, which converges to the significantly
more accurate a posteriori predictions displayed in columns 4 and 5. The haptic and audio predictions are corrected through
the spreading of activation. Prediction confidences are indicated in parentheses. Bold text indicates correct decisions whereas
stroked text indicates wrong decisions.

Object Without Concept Web With Concept Web

Nouns Adjectives Nouns Adjectives
ball (37%)
box (14%)
cup (12%)

cylinder (14%)
plate (11%)
tool (12%)

edgy (37%) round (63%)
hard (45%) soft (55%)
noisy (54%) silent(46%)
short (59%) tall (41%)
thick (54%) thin (46 %)

ball (100%)
box (0%)
cup (0%)

cylinder (0%)
plate (0%)
tool (0%)

edgy (0%) round (100%)
hard (100%) soft (0%)

noisy (0%) silent(100%)
short (100%) tall (0%)
thick (100%) thin (0 %)

the effectiveness of the web-based approach is directly due to
its ability to capture second-order conceptual relations, which
is ignored by the other methods.

B. Scenario 2: Interaction-driven activation of concepts in the
web

In the second scenario (Figure 13), the human partner
not only presents iCub with an unknown object, but also
commands a single, certain action to be performed. This time,
the activation spreads to the concept web from two different
entry points.

In the first path, iCub looks at the object, and collects its
visual features in a partial entity feature vector (composed of

features [1-67]). Since it is not allowed to grasp the object
to investigate it (grasping may not be the required action),
haptic, proprioceptive, or auditory features are not available
perceptually. This partial entity feature vector (ev in Section
III-C) is compared against the noun and adjective prototypes
to predict the corresponding categories for the object (Section
IV-B). These predictions are used in turn to activate related
concepts in the web. Meanwhile, over a second path, the
issued command word (e.g., grasp, push left, etc.) activates
the necessary verb concept through the language space. When
the concept web is allowed to propagate activation, knowledge
(belief) oscillates between the verb concept and the initially
predicted noun and adjective concepts until convergence.
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Fig. 14: Schematic representation of Scenario 3. The ball, cup, and plate objects are placed in the environment and the drop
behavior is commanded to iCub. iCub is expected to select any one of the objects to which the commanded behavior can
safely be applied. Activation enters the system from the language space through the commanded verb concept. Since the drop
behavior is not safe on cups and plates, it spreads towards the ball noun and its related adjectives as shown. Colored nodes
denote activated concepts. Some concepts/connections are not shown for clarity. [Best viewed in color]

TABLE VII: The selection of objects to which sample commands are applicable. The selection is performed by the spreading
activation on the web, which disperses to the related verb concepts as well. throw verb concept activates selectively non-cup
and non-plate objects. Selection confidences are indicated in parentheses. Images depict RGB-colored depth images (collected
via PCL library from the Kinect sensor). [Best viewed in color]

Command Scene Existing Objects Selected Objects

“throw” box (100%)

cup (25%)
box (25%)
yellow plate (25%)
red plate (25%)

“grasp”

box (16.67%) box (16.67%)
green cup (16.67%) green cup (16.67%)
white cup (16.67%) white cup (16.67%)
yellow plate (16.67%) yellow plate (16.67%)
red plate (16.67%) red plate (16.67%)
ball (16.67%) ball (16.67%)

In Figure 13, an example scenario is shown in which iCub
is given a ball, and told to apply a “push” behavior on it.
Although initially the haptic and auditory information are
not available to iCub, these concepts are also active in the
converged concept web. The quantitative predictions with and
without the concept web are depicted in Table VI.

C. Scenario 3: Action-driven activation of concepts in the web

The final scenario demonstrates how iCub is commanded
to perform a certain action in an environment populated with
multiple objects (Figure 14). The command does not specify
on which object to apply the behavior, therefore iCub must
itself choose the appropriate object on which to act. Here we
must remember that certain behaviors cannot be applied to all

objects. Therefore, activation must not spread from these verb
concepts to inappropriate noun types. After convergence, iCub
will pick up a properly activated noun to act upon. If there is
more than one appropriate object, a random decision will be
made among them.

The entry point of activation in this scenario is from the
commanded verb concept. In the sample case in Figure 14,
iCub is presented with three objects: a cup, a plate, and a
ball. It is then commanded to apply the drop behavior. Since
the drop verb is not connected to the cup and plate nouns,
activation cannot spread to cup and plate. On the other hand,
the ball noun is activated through its connection to drop. As
a result, iCub decides to apply the action to this object. Table
VII presents quantitative selection percentages for two sample
cases.
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This scenario serves as a proof of concept that behaviors can
activate related noun concepts, but not unrelated ones. This
kind of “reverse” activation spreading can guide the robot’s
actions in the world.

VII. CONCLUSION

In this work, we have addressed an important problem in
cognitive systems, that of modeling a concept web in a similar
fashion to us, humans. The web is constructed based on the
co-occurrences of concepts from the interactions of the robot,
and modeled using Markov Random Fields. Since the resulting
web is a cyclic graph, inferences are made using Loopy Belief
Propagation, as is widely done in the literature.

We have demonstrated that, given an observation of an
object, our robot can activate in its “brain” the relevant
noun concepts, adjective concepts, verb concepts (describing
what behaviors can be applied on the object) as well as the
words that can be used for the object. Moreover, given an
interaction on an object or in fact, an interaction without an
object (that would normally take an object), the robot can
activate the necessary concepts in the web as well. Being
linked to language, perception and motor (action) spaces, the
concept web allows activation of relevant information from
and to any modality. As we reviewed in detail in Section II-C,
such a concept web is very much in line with findings from
neuroscience.

Moreover, we showed that such a web allows the robot to
make a better interpretation of the environment. By using the
co-occurrences from other concepts, wrongly predicted con-
cepts can be corrected, and confidences of correct predictions
can be increased.

There are important future directions that can be explored
further. For instance, a cognitive model would need to include
spatial, temporal, adverb, and social concepts in addition to
the noun, adjective, and verb concepts, in order to model the
real world more accurately. Moreover, a more realistic model
would need to account for super-ordinate, or “higher-order”
concepts as well, such as “animal”, or “utensil”. Incorporating
a conceptualization mechanism which takes other concepts as
its input would allow such reasoning. Finally, the concept
web presented in this study is for all intents and purposes
a long-term memory model, with no attentional or short-term
mechanism. A short-term memory module would enable pro-
cessing of instances that are inconsistent with what is already
known, which can then be either (i) allowed as variations,
or (ii) incorporated into the knowledge base as information
updates, as necessary.

ACKNOWLEDGMENTS
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