

Course Information

Course Code

5710222

Course Section

1

Course Title

STATISTICAL METHODS FOR COMPUTER ENGINEERING

Course Credit

3

Course ECTS

5.0

Course Catalog Description

Introduction to probability. Discrete and continuous random variables and their distributions. Simulations of random variables. Descriptive statistics. Statistical inference. Regression. Monte Carlo methods. Stochastic processes. Queuing systems.

Prerequisite: MATH 120

Prerequisites

Students must complete one of the following sets to take this course.

Set Prerequisites

1 2360120

Schedule

Tuesday, 09:40 - 10:30, -Thursday, 09:40 - 11:30, -

Course Website

https://user.ceng.metu.edu.tr/~tcan/ceng222_s2021/overview.shtml

Learning Management System

ODTU-Class

Instructor Information

Name/Title

Prof.Dr. TOLGA CAN

Office Address

Department of Computer Engineerig B-109

Email

tcan@metu.edu.tr

	\sim	4.4
tcantr/	നിന്നു	ail.com
ισαιτιι	w qii i	

Personal Website

http://www.ceng.metu.edu.tr/~tcan

Office Phone

210 5537

Office Hours

By appointment

Course Assistants

Name/Title

Araş.Gör. MUHAMMET TUĞBERK İŞYAPAR

Office Address

Email

Office Hours

Name/Title

Araş.Gör. MEHMET DİNÇ

Office Address

Email

Office Hours

Name/Title

Araş.Gör. MUSTAFA DUYMUŞ

Office Address

Email

Office Hours

Course Objectives

At the end of this course the students will be able to:

- analyze and interpret large scale data,
- apply probability theory and statistics to handle uncertainty,
- infer facts and relationships from collected data, and
- construct simulations by sampling from arbitrary distributions

The course will provide the students the ability to apply knowledge of mathematics, science, and engineering; therefore supporting the corresponding student outcome.

Course Learning Outcomes

The course supports the following student outcomes defined in ABET General Criterion 3 for engineering programs:

- an ability to apply knowledge of mathematics, science, and engineering
- an ability to design and conduct experiments, as well as to analyze and interpret data
- an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Program Outcomes Matrix

Undergraduate

Program Outcomes		Level of Contribution			
		0	1	2	3
1 an ability to	apply knowledge of mathematics, science, and engineering				Χ
2 an ability to	design and conduct experiments, as well as to analyze and interpret data				Χ
3 constraints	o design a system, component, or process to meet desired needs within realistic such as economic, environmental, social, political, ethical, health, and safety, rability, and sustainability	X			
4 an ability to	o function on multidisciplinary teams	Χ			
5 an ability to	o identify, formulate, and solve engineering problems		Χ		
6 an underst	anding of professional and ethical responsibility	Χ			
7 an ability to	communicate effectively	Χ			
	education necessary to understand the impact of engineering solutions in a global, environmental, and societal context	X			
9 a recogniti	on of the need for, and an ability to engage in life-long learning		Χ		
10 a knowled	ge of contemporary issues		Χ		
11 an ability to practice	o use the techniques, skills, and modern engineering tools necessary for engineering				Χ
12 an ability to varying co	apply design and development principles in the construction of software systems of mplexity.	Χ			
0: No Contribu	tion 1: Little Contribution 2: Partial Contribution 3: Full Contribution				

Instructional Methods

Formal lectures (3 hrs per week)

Tentative Weekly Outline

Wee	k Topic	Relevant Reading	Assignments
1	 Probability (Chapter 2) Events and their probabilities (2.1.1) Rules of probability (2.2) Combinatorics (2.3 - student reading) Conditional probability and independence (2.4) 	Chapter 2	
2	 Discrete Random Variables (Chapter 3) Distribution of a random variable and a random vector. (3.1 and 3.2) Expectation and variance. (3.3 - excluding 3.3.7) 	Chapter 3 (3.1, 3.2, 3.3)	

Weel	Торіс	Relevant Reading	Assignments
3	 Discrete distributions (3.4) Bernoulli distribution, Binomial distribution, Negative Binomical Distribution, Geometric distribution, Poisson distribution, Poisson approximation to Binomial. 	Chapter 3, section 4 (3.4)	
4	 Probability density (4.1) Families of continuous distributions: Uniform distribution, Exponential distribution, Gamma distribution, Normal distribution, Normal approximation to Binomial. (4.2) Central Limit Theorem. (4.3) 	Chapter 4	
5	Week 4 continued	Chapter 4	
6	 Statistics (Chapter 8) Population and sample, parameters and statistics (8.1) Simple descriptive statistics. (8.2) Graphical statistics. (8.3) 	Chapter 8	
7	 Statistical inference (Chapter 9) Parameter estimation. (9.1) Confidence intervals. (9.2) Unknown standard deviation. (9.3) 	Chapter 9, Sections 9.1, 9.2, and 9.3	
8	Statistical inference continued (Chapter 9) • Hypothesis testing. Type I and Type II errors. Level alpha tests. P-value. (9.4)	Chapter 9, Section 9.4	
9	Statistical inference continued (Chapter 10) • Chi-square tests (10.1)	Chapter 10 Section 10.1	
10	Regression (Chapter 11) • Least squares estimation. (11.1)	Chapter 11, Section 11.1	
11	 Simulations and Monte Carlo methods (Chapter 5) Simulation of random variables (5.2) Monte Carlo methods (5.3.1 and 5.3.2) 	Chapter 5	
12	Stochastic processes (Chapter 6) • Markov processes and Markov chains. (6.2)	Chapter 6, Section 6.2	

Wee	k Topic	Relevant Reading Assignments
	Stochastic processes continued (Chapter 6)	Chapter 6,
13	Counting processes (6.3)Simulation of stochastic processes (6.4)	Sections 6.3 and 6.4

Course Textbook(s)

Probability and Statistics for Computer Scientists, Second Edition, Michael Baron, 2013, 978-1439875902

Course Material(s) and Reading(s)

Material(s)

No additional physical material is required.

Reading(s)

Additional readings:

- Introduction to Probability, Statistics, and Random Processes. Hossein Pishro-Nik, 2014, 978-0990637202
- Probability Theory: The Logic of Science, E. T. Jaynes, 2003, 978-0521592710
- Probability and Random Processes, Grimmett, Geoffrey, and David Stirzaker, 2001, 978-0198572220
- Probability and Statistics with Reliability, Queuing, and Computer Science Applications, Kishor S. Trivedi, 2001, 978-0471333417

Supplementary Readings / Resources / E-Resources

Resources

Michael Baron's course web site:

http://www.utdallas.edu/~mbaron/3341/Spring13/index.html

Assessment of Student Learning

Assessment	Dates or deadlines
Homeworks (4 in total)	

Exams (1 midterm, 1 final exam)

Course Grading

Deliverable	Grade Points
4 Homeworks (8 percent each)	32
Midterm exam	30
Final exam	30
12 quizzes (best 8 will be counted towards your grade)	8
Total	100

Course Policies

Class Attendance

Make sure that the section you follow is the section to which your are registered. In case of schedule conflicts, petition for section change.

Class Participation

Communication platform (cow, odtuclass, web page, emails etc.) may depend on the section. Please follow your section instructor, and check your metumail (or the address you registered in the metu system) regularly.

Make up for Exams and Assignments

Students need to submit approved medical reports to take make-up exams (for the midterm or the final exams).

Other

Information for Students with Disabilities

To obtain disability related academic adjustments and/or auxiliary aids, students with disabilities must contact the course instructor and the ODTÜ Disability Support Office as soon as possible. If you need any accommodation for this course because of your disabling condition, please contact me. For detailed information, please visit the website of Disability Support Office: http://engelsiz.metu.edu.tr/

Academic Honesty

The METU Honour Code is as follows: "Every member of METU community adopts the following honour code as one of the core principles of academic life and strives to develop an academic environment where continuous adherence to this code is promoted. The members of the METU community are reliable, responsible and honourable people who embrace only the success and recognition they deserve, and act with integrity in their use, evaluation and presentation of facts, data and documents."