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Abstract—Ever-growing need for gene-expression data anal-
ysis motivates studies in sample generation due to the lack
of enough gene-expression data. It is common that there are
thousands of genes but only tens or rarely hundreds of samples
available. In this paper we attempt to formulate the sample
generation task as first building alternative Gene Regulatory
Network (GRN) models, second sampling data from each of
them and then filtering the generated samples using metrics
that measure compatibility, diversity and coverage with respect
to original data set. We constructed two alternative GRN
models using Probabilistic Boolean Networks and Ordinary
Differential Equations. We developed a multi-objective filtering
mechanism based on the three metrics to assess the quality
of the newly generated data. We presented a number of
experiments to show effectiveness and applicability of the
proposed multi-model framework.
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I. INTRODUCTION

One of the most important problems for gene expression
datasets is the size of data. It is normally skewed, i.e.,
there are thousands of genes per sample but the number of
samples is very small. In other words, if we denote the gene
expression data as a n× s matrix where n is the number of
genes and s is the number of samples, then n >> s.

The practical outcomes of this fact are numerous. The
most important one could be articulated as follows; even
when the limited number of samples draw an accurate pic-
ture of the expression levels, having so few samples would
lead to low confidence in the results of any computational
method [1], [2], [3], [4]. Actually, several domains, including
health informatics and molecular biology suffer from the
scarcity of the data to be used in inferring some common
characteristics to be used for effective knowledge discovery.

There are both direct and indirect approaches proposed
for data enrichment. Indirect approaches such as the ones

in [5], [6], [7], [8] try to estimate the required sample size
firstly, and then apply experimental techniques to utilize the
existing data in case of limited sample size. The study in [9],
on the other hand, is a direct approach. They have applied
different types of generative models and try to enhance the
available data by combining the simulated results from the
different generative models. In [9], the sample selection
criteria are weak and the mechanism is based on single
objective function using linear combination of the metrics
that cannot be transformed to each other. Furthermore, in
the experimental evaluations, the samples used for model
building have also been used in the metric evaluations. In
other words, the training and test sets were identical, which
makes experimental justification weak.

In this work, thereby, we have enhanced the model
building, sample selection and experimental evaluation steps.
We have selected two basic generative models that exhibit
different characteristics. The first model is the Probabilistic
Boolean Network (PBN) [10] and the second model is an
Ordinary Differential Equations(ODEs) formulation of gene
regulation systems [12]. For the sample selection phase,
each generated sample is evaluated by three well-defined
metrics. These metrics are calculated both using the training
data as in [9] and using a test data which is not used in
model building. Final samples are determined by a multi-
objective selection mechanism. This mechanism determines
the quality of the generated samples separately on all metrics
and then rank them in a multi-objective way. In the last step,
the highest scoring samples are selected for inclusion in the
newly generated dataset.

The rest of this paper is organized as follows. Section II
describes the formulation of the two generative models.
Section III explains the defined evaluation metrics. Sec-
tion IV contains the experimental evaluations to justify the
effectiveness of our proposed sample generation method.
Section V concludes our work and points out possible further



studies.

II. THE EMPLOYED GENERATIVE MODELS

We constructed two generative models, Probabilistic
Boolean Network and Ordinary Differential Equations mod-
els of GRNs. The underlying framework can be augmented
with other generative models as well, but it is recommended
to integrate into the framework only models that are least
dependent on the already covered models. This way, the
newly integrated models will be more effective towards
contributing to a more robust approach.

A. Probabilistic Boolean Network Model

Probabilistic Boolean Networks (PBNs) have been pro-
posed by Shmulevich et al. [10] for specifically modeling
gene regulatory networks. They are probabilistic versions
of the Boolean Networks introduced by Kauffman [11].
Each node in the PBN is associated with multiple boolean
functions, a specific wiring diagram for each function and
a probability distribution over the set of boolean functions.
The value of each node is calculated by randomly selecting
one of the boolean functions associated with it. The variables
of the functions are determined by the wiring diagram.

Shmulevich et al. [10] proposed a method for deducing
the parameters of PBN. This method uses a coefficient of
determination (COD) measure for possible boolean func-
tions [13]. The COD of a boolean function gives us relative
decrease in the error when the value of the node is estimated
via the boolean function instead of a constant estimator. The
COD of boolean function f (i)k for node Xi can be shown as
θik and it can be formulated as

θik =
εi − ε(Xi, f
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Among all possible wirings and boolean functions it is
possible to choose the best estimators for the given node
and assign them probability values as

c
(i)
k =

θik∑li
m=1 θ

i
m

(2)

where c(i)k is the probability value assigned to f (i)k and li is
the number of estimators chosen for Xi.

In order to compute parameters of the PBN, we specify
the first [1, s−1] samples as inputs and the last [2, s] samples
as outputs of the PBN. Hence, for each sample at time t,
the output o of the PBN is the sample at t+1. Thereby, we
tried to identify the PBN that fits best to the given samples.

We have limited the number of possible functions and the
number of variables for each function as 3. This restriction
is mandatory, since without any restriction, the number of

possible variables is in the order of factorial in terms of
the number of genes, and the number of possible functions
for each node is in the order of exponential in terms of the
number of genes.

Once the parameters of the PBN are computed, the
network can be easily used for generating new data by
simply running the constructed PBN k times recursively.
Also, in order to confirm diversity in the produced data, we
use perturbation. While running the network, there is a small
probability that the value of a node will change.

B. Ordinary Differential Equations Model

Modeling gene regulatory systems by using ordinary dif-
ferential equations(ODEs) is one of the oldest and common
methods. Among different approaches constructing the ODE
model for gene regulation, we have used TSNI algorithm
due to its prevailing properties on other regulation modeling
algorithms [12]. TSNI is able to cover time series data and
able to determine the external perturbations to the system
automatically from the available data.

The main task in gene regulation modeling using ODEs
is to find the regulation functions for each gene. TSNI
algorithm assumes the regulation functions have the form

.
xi(tk) =

N∑
j=1

aijxj(tk) +

P∑
l=1

bilul(tk) (3)

where 1 ≤ i ≤ N, 1 ≤ k ≤ M and N is the number of
genes, M is the number of samples in the existing data, P
is the number of external perturbations to the system. Here
xj(tk) is the gene expression level of gene j at time tk,
aij is the effect of gene j on gene i, bil is the effect of
lth external perturbation to gene i and ul(tk) is lth external
perturbation to the system at time tk.

If we combine all differential equations in a single matrix
equation, we can rewrite equation (3) as

.

X(tk) = A ∗X(tk) +B ∗ U(tk) (4)

In Equation (4), the only unknowns are the regulation
matrix A and the perturbation matrix B.

.

X(tk) can be
approximated as X(tk+1) and it is the last M − 1 data
points, X(tk) is first M − 1 data points and U(tk) is the
M − 1 perturbations that are done to the system for each
time tk. To be able to solve the Equation 4, it is required that
M ≥ N + P . Since for most of the datasets this condition
does not hold, TSNI applies Principal Component Analysis
(PCA) to the Equation 4 which reduces the dimensions of the
unknown matrices to manageable sizes. Then, it is fairly easy
to solve the Equation 4 and obtain the unknown matrices as
in [12].

There are two important points about TSNI algorithm, the
number of principal components (PCs) to be considered and



the number of external perturbations to the system. Although
both of the parameters can be adjusted by the user, in thus
study we set the number of PCs as 2 and the number of
external pertubations as 1 as in [12].

After finding the regulation and perturbation matrices of
the differential equation model, it is easy to generate new
samples from the model by just simulating the system of
differential equations numerically.

III. EVALUATION METRICS

This section describes the metrics that we defined to
determine the most valuable samples from the pool of gener-
ated samples. We have defined three metrics, compatibility,
diversity and coverage to measure different aspects of the
generated data.

Compatibility measures how much the newly generated
samples resembles to the original samples. For each newly
generated sample, it is the average Euclidean distance to all
samples in the original data set.

Diversity measures how much different each newly gen-
erated sample from the existing samples. We have calculated
the entropy of each sample in the original dataset and sum
the differences. This forms a basis for the total information
held by the original dataset having M samples. Then, we
added the newly generated sample to the original dataset and
calculate the total information again for the dataset of M+1
samples. By dividing the latter value of total information to
the former one, we get a ratio representing the diversity
value of each newly generated sample.

Coverage measures how the newly generated samples
cover the sample space. For each newly generated sample, it
is the average Euclidean distance to all other newly gener-
ated samples. If a single sample is created, the value of the
coverage metric is set to the maximum of the normalization
interval.

For each newly generated sample, compatibility, diversity
and coverage values are calculated, forming a vector. We
use a multi-objective selection mechanism to sort these
samples using the notion of (strict) dominance. For the non-
dominance case, we select randomly from equally dominat-
ing samples.

IV. EXPERIMENTAL RESUTS

Experimental evaluation is done by using different real life
biological datasets. The first dataset is the gene expression
profile of metastatic melanoma cells [14] which is composed
of 7 genes and 31 samples [15]. The second dataset is the
previously selected set of 25 genes related to cell cycle [16]
of Saccharomyces cerevisiae. This data is available from
Spellman et al. [17], consisting of 25 genes and 77 samples
in total. The last dataset is siRNA disruptant dataset in
human umbilical vein endothelial cells (HUVECs) [18]. It
has 379 Rel/NFkB-associated genes and 400 samples.

The details of the evaluation metrics are discussed in Sec-
tion III. As compatibility and coverage metrics are distance
based metrics, their results are mapped into 0−100 interval
and diversity results are remained as is. For evaluation
semantic, the higher values for coverage is desired and for
compatibility and diversity metrics, there is a balance. For
higher values of compatibility, higher values of diversity,
for lower values of compatibility, lower values of diversity
is desired.

Each step of each experiment is repeated 10 times to
decrease the effects of the randomization. The reported
results are the average values over repetitions.

A. Experiments Based on Whole Data

This section describes the experiments on number of gen-
erated samples, where the performance is evaluated based on
the training sets. We have used melanoma and yeast datasets.
We have run our system 50 times, produced 10, 20, ..., 500
new samples and plot the results of the metrics.

The compatibility, diversity and coverage values are
shown in Figures 1, 2 and 3, respectively.

Figure 1. Compatibility values for different number of samples produced

Figure 2. Diversity values for different number of samples produced

For both datasets, the results show that compatibility val-
ues increase as the number of generated samples increases. It
is mainly because of the fact that the system produces more



Figure 3. Coverage values for different number of samples produced

similar samples as the number of produced samples increases
relative to the original sample set. As we run our system for
generating more samples, system produces samples that are
converging to the original ones.

The results for diversity values are not similar to the ones
in compatibility values. It remains stable as the number of
produced samples increases. This shows that the diversity
of the produced samples is almost at the same level for
each generated sample set. For the melanoma dataset, each
new sample holds 30% more information with respect to the
original dataset. Note that the diversity value would be 1.0 if
the information contents of the original dataset and the set
of generated samples are same. This result poses the fact
that the data generated by our system is not only very close
to the original melanoma dataset but also contains different
information than the original dataset, which verifies the high
quality of the generated data. For the yeast dataset, on the
other hand, the diversity value is much less. However, we can
still say the newly generated samples carry new information
since the diversity values are always greater than one.

The results for coverage completes the evaluation of the
generated datasets. For the data generated from melanoma
dataset the coverage values decrease as the number of pro-
duced sample increases. This is consistent with compatibility
values meaning that the generated data is getting closer to
each other. We can observe similar situation for the yeast
dataset case but having proportionally greater values. That
means, indeed, although generated data from yeast dataset
does not hold much new information, its coverage is fairly
good so that it can be seen as a successful result.

B. Experiments Based on Separated Data

In the previous section we have evaluated the metrics with
respect to the original datasets. Although this comparison
gives fair results and represents the quality of the generated
data reasonably, its confidentiality is weak since we use the
original datasets not only for training and but also for testing
purposes.

In this section, thereby, we have divided the yeast and

HUVECs siRNA disruptant datasets into two parts, training
and test sets. For yeast dataset we have used the first 50
sample as training set and last 27 samples as test set. For
HUVECs siRNA disruptant dataset we have used the first
300 samples as training set and last 100 samples as test set.
We have also calculated metric results relative to the training
set as in the previous section to be able to see the difference.

In the Figure 4 and 5, the plots show the compatibility and
entropy values based on training and test sets. The system
is run for generating 50 samples and the compatibility and
diversity values of each sample are plotted. It can be seen
that the compatibility values are higher, and the entropy
values are lower with respect to the test set. This result
justifies the claim about the low confidence level of the
metric results based on training set. Comparison with the
training set represents the generated data as more closer and
less diverse although it is less closer but much diverse in
reality.

In the Figure 6 and 7 we have examined the differ-
ence between the metric values based on training and test
sets wrt number of generated samples. We have generated
10, 20, ..., 500 many samples from the separated training
sets. For each generated sample set we have calculated
compatibility and diversity values based on both training
and test sets. By subtracting the results of training set from
the results of the test set, we obtain the difference values for
all generated sample sets.

According to Figure 6 and 7, the compatibility difference
is negative since newly generated results are always closer
to the training set than the test set. This difference is
acceptable until a reasonable value. Because we do not
want the generated data to be very close to the original
data. On the other hand, the positive results of entropy
is because the newly generated data always carries more
information with respect to test set than training set. This
result justifies the high quality of the data as it always holds
new information with respect to the originally available and
unseen test data. In the Figure 7, the diversity results of
the newly generated data differs from that of Figure 6.
It increases as the number of generated samples increases
meaning that when we generate more and more samples we
are always very close to the originally available test data
and always carrying new, even more and more information
relative to this available test data. It is a very striking result,
in fact. Because it can be stated that, computationally, we
are able to generate many new samples just like generating
original samples. The complex internal dynamics of the gene
regulation can be simulated successfully by superposing
different methods and generating data as if it were generated
originally by the complex internal dynamics.

V. CONCLUSIONS AND FUTURE WORK

In this work, we attempted to solve an important problem
occurring in many different areas such as health informatics



Figure 4. Compatibility and diversity values based on training and test set for each generated sample from Yeast

Figure 5. Compatibility and diversity values based on training and test set for each generated sample from HUVECs

Figure 6. The difference between compatibility and diversity values based on training and test set from Yeast

or molecular biology, the sample size problem.
Experimental results demonstrate that the newly generated

samples are so valuable that they can just be treated as orig-
inally available data. Moreover, the power of computational
methods is verified and the practical result of simulating the
very complex gene regulation dynamics is done successfully.

As a future work, the framework may be enhanced by
integrating more generative models. It will improve the qual-
ity of the produced samples and robustness of the system.
Moreover, the produced samples may be studied under a
pre-determined analysis task for verifying the effectiveness

of our system. Furthermore, determining a bound for the
required sample size for generating qualified gene expression
data may also be investigated.
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