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Abstract

In this paper, we have studied the multiagent planning and learning problem. We have implemented

a multiagent planning algorithm based on Factored Markov Decision Processes (MDPs), in which each

agent runs its own value iteration algorithm and tries to maximize its own action-value function. We

have also implemented three different multiagent learning algorithms. The first and second ones are

known methods from the literature, namely Coordinated Reinforcement Learning [7] and Sparse Coop-

erative Q-Learning [9], whereas, the third one is a novel, Hybrid approach combining the first and second

methods together. It applies the two algorithms concurrently to different agents in the system based on

the coordinations between the agents. All of the three learning algorithms is based on agent based decom-

positions, but uses different types of action-value update semantics. We have done several experiments

on single problem instance, namely System Administrator, which defines a network of several machines

and aims to maximize number of successfully completed jobs by the system. We have done experiments

on three different network topologies, simple star topology, 4-Clique topology and combination of star and
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4-Clique topology. Results show that Factored MDP approach fails to finish for all network topologies

except the star, due to high number of in-degree per node. Among the learning approaches, SparseQ

algorithm always perform the best in terms of number of successfully completed jobs, with respect to the

Coordinated RL and Hybrid Learning approaches. Results also show that none of the learning algorithms

suffers from time constraint, the longest measured running time is about 45 seconds for system of 34

agents.

1 Introduction

A multiagent system can be defined as a collection of agents that are trying to reach to a com-

mon/personal goal possibly by interacting each other [13]. Building a multi-agent system provides us to

understand and manage the system in various ways. However, it is hard to obtain single, uniform model

for all multiagent problems due to their highly domain specific natures.

There are important and successful single agent, centralized models and algorithms for examining single

agent systems. Markov Decision Problem formulation is one of the important planning frameworks for

stochastic single agent planning problems. Applying well-known algorithms, such as value iteration or

policy iteration we can get an optimal policy for the system. An agent trying to reach to a goal cell

in a maze may be an example of this kind of problems [12]. If the model of the environment, the state

transition probabilities and reward function, is not known by the agent, on the other hand, there are also

various learning algorithms. Here, the agent tries to learn the optimal policy on-line. It makes an action

to the environment and get a reward based on the action. That leads to learn the series of actions that

would maximize the reward and return the optimal policy. The same maze problem for a single agent

can easily be solved using this online learning approach, too.

Since a multiagent system can be viewed as a huge single agent system, the models and algorithms

for single agent systems are always valid for multiagent systems, also. The aim is to get an optimal

policy for the system that maximizes the total reward. However, there are critical points that should be
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handled. First of all, enumerating all possible joint states and joint actions leads to exponential size of

states and actions. Applying classical value iteration or Q-learning algorithm will definitely fail due to

exponential size of state and action space. Besides, it is very common for a multiagent system that most

of the joint states and joint actions is unnecessary since it will not be visited as a joint state nor fired as

a joint action. So, it is not required to consider all possible joint state and joint action values. We need

only to know the required states and actions that will affect our solution to the problem. Hence, while

designing a multiagent system, the key point is to manage the locality of agents. Since the management

of locality highly depends on the domain, there are many points that should be handled carefully for a

multiagent system design.

Very first point for modeling a multiagent system is that agents may represent cooperative or compet-

itive behavior. Modeling completely differs depending of this choice. Another point about multiagent

system design is transitions between the states of the systems. As it is intractable to enumerate all

possible system states we have to provide a way to consider only the states that are meaningful for the

system and agents. Another point that may differ with respect to the problem is the reward mechanism.

The reward may depend on the total system state or differs for each single agent or depend on only some

subset of agents for each agent. The coordination between agents is also another problem as different

types of coordination may lead to different type of solutions.

Hence, in this study, we have implemented different coordinative multiagent planning and learning

algorithms and tried to understand the semantics behind the algorithms based on experimental results.

The first algorithm we have implemented is a multiagent planning algorithm. It is a variant of the

factored MDP approach presented in [6]. The second algorithm we have studied is the one presented

in [7], namely Coordinated Reinforcement Learning. It is a Q-learning algorithm adapted for multiagent

systems. The third algorithms is also a variation of Q-learning algorithm. It is presented in [9] and

applying different type of decomposition on Q-learning algorithm providing pure local iterations for each

agent. The last one, on the other hand, is a novel and Hybrid algorithm combining both Coordinated

RL and SparseQ Learning algorithms. It tries to subsume beneficial sides of both algorithm. We have
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implemented all of the algorithms on one problem instance, System Administrator [5], for different size

and types of network topologies. System Administrator problem defines a network machines. Each

machine corresponds to an agent. The machines are affecting their neighbors and the aim is to maximize

successfully completed jobs by the system of agents.

2 Background

There are several multiagent planning and learning approaches.[4] assumes that agents have capability

of making an estimation about the states of other agents. This is done distributing the state information

for each agent. Based on the estimation, agents trying to act optimally. [1] identifies multiagent planning

problem as a decomposed MDP problem. They decompose the transition function and assumes each

agent’s state transition is independent of all of the other agents. As the transitions are decomposed they

divide the system for different MDP problems for each agent and find formulas for each of them separately

first. Then they tie the total reward function on different policies of other agents and trying to improve

total reward by checking all possible solutions for each separated MDPs. [2] also uses multiagent MDPs

but tries to define multiagent coordination problem from a game-theoretic approach and formulate it as

a Nash Equilibrium problem. The critical part is that they assume all agents know the structure of the

game and compute the joint MDP to find the optimal value of each state. This assumption is unrealistic

in the sense of the agents that may not the actual environment and optimal value of each state. [11],

on the other hand, uses direct policy search for finding optimal policy for all agents. It uses gradient-

descent policy search algorithm for cooperative multiagent planning problem. They assume each agent act

independently but gains same global reward and try to combine local optimal solutions for each agent to

get the global optimal solution. They also relate their algorithm to Nash Equilibrium for obtaining local

optimal solutions. [8] implements different decomposition schema for multiagent planning using MDPs.

First one is to run value iteration at each agent separately, but use global reward in the update of value

function for each agent. The second one uses local reward for each agent and runs value iteration for

each agent separately. In the third and fourth ones, they distribute the local reward to the neighbors for
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each agent and expected next state value to the neighbors for each agent in a weighted way, respectively.

In all algorithms, they assume each agent is represented by a state variable and the next time step value

for a state variable only depends on its previous state variable and action variable. In that sense they are

not accounting the coordination between agents explicitly but trying to combine the local solutions in a

proper way. [14], on the other hand, draws a general framework for multiagent learning problem. They

refer to the term COIN (Collective Intelligence) and try to explain the principles of COIN. It is said

that COIN framework should represent subworlds, constraint-alignment, subworld-factored principles.

Subworlds principle is to partition the agents so that each subworld contains only agents affecting each

other. Each subworld has its own total utility. Constraint-alignment is that different subworlds do not

affect each other and subworld-factored principle is that local utility of a subworld cannot decrease the

global utility of the whole system.

There are also several application domains for multiagent systems. For example [1] used Mars Rovers

problem for their algorithm. Periodically, rovers are exploring the space and bringing the scientific data

from the environment to the control central in which they always communicate. [11] implements a soccer

game including two learning agents and one opponent agent with a fixed policy. There are also network

rouing [3] and sensor networks domains [10] for applications of multiagent systems.

The algorithms that we will use in this work is presented in [6, 7, 9], one is a multiagent planning algo-

rithm for Factored MDPs and the three of them are multiagent learning algorithms using active-learning

techniques. We will implement both local and global reward mechanism and use Dynamic Decision Net-

works for state transitions between state variables. As an application domain we will implement all of

the algorithms on System Administrator problem [5], in which each agent is associated with a machine

and machines are connected in a specific way. Machines are loaded by several jobs with some probability

and at each time, agents have to make a decision on rebooting the machine or not. The ultimate goal is

to maximize the successfully completed jobs.
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3 Problem Description

In this project we will solve the System Admin Problem presented in [5] for testing the algorithms.

The specifications of the problem as following:

1. The problem consists of a network of n machines connected in one of the following topologies:

chain, ring, star, ring-of-rings, or start-and-ring.

2. Each machines are associated with and agent Aj

3. Each agent has two actions: rebooting the machine or not.

4. Rebooting make the status of the machine as good but losing any running jobs

5. States of machines are described by two variables, status Sj and load Lj for agent j

6. Status variable may have three values as {good, faulty, dead}

7. Load variable may have three values as {idle, loaded, process successful}

8. New jobs arrive with probability of 0.5 on idle machines and make them loaded

9. A machine both loaded and good may finish its job successfully with 0.5 probability

10. Faulty machines can execute jobs but it takes longer times to terminate and jobs end with 0.25

probability

11. A dead machine is not able to execute jobs remains dead until it is rebooted

12. Each machine receives a reward of +1 for each job completed successfully, otherwise it receives 0

reward

13. Machines fail stochastically and switch status from good to faulty and faulty to dead

14. A dead machine increases the probability that its neighbors will become faulty as 0.5 and eventually

dies
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15. At the beginning all machines are in good status and the load is set to ‘idle’

16. The aim is to maximize the number of successfully completed jobs

4 Models and Algorithms

In this section, we will explain the models and algorithms that we have used for our study. We will

explain 4 different algorithms that are solving multiagent planning and learning problem from different

aspects. The first one is based on value iteration for Factored MDPs and the second, the third and the

fourth ones are variations of distributed Q-learning algorithms. All of the methods assume the global

action-value function is the summation of local action-value functions, the global reward function is the

summation of local reward functions and each agent tries to maximize its own local action-value function.

4.1 Multiagent planning for factored MDPs

The multiagent planning algorithm we will show is based on factored MDPs [6]. In this algorithm,

each agent is connected to some other agents in a specific way. The state of an individual agent may

only be affected by the state of the agent itself, the states of the agents that are connected to the agent

and the action that the agent has fired. Hence, the exponential joint state and action space is reduced

to the number of coordinations in the system. Each agent is represented as a state variable and each

action is represented as an action variable. The state transition of each agent is expressed by the state

and action variables that the agent depends on.

The dependency between state and action variables are represented with a Dynamic Decision Network

(DDN). This network provides us to build the model of the environment. That is, the parameters of the

local state transition functions and parameters of the local reward functions. Figure 1 presents a DDN

for star topology of three agents. Here, we can see that the value of state variable X2 at time t+ 1 only

depends on the value of X1, X2 and A2 at time t. We also define the reward mechanism by the DDN.

Each state variable is associated with one reward value connected to itself implying that the local reward
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function of each agent is only affected by the state of the agent itself. The last thing that we will extract

from the DDN is the next state expected value function, hi, for each agent. Here, it is shown that next

state expected value of each agent may depend on only its own state variable as for h1, or it may also

depend on a subset of state variables as for h2 and h3.

After defining the DDN and the model details, each agent runs its own value iteration as in the

Algorithm 1. Note that, the optimal joint action is achieved by applying Variable Elimination technique

to the local action-value functions in order to get the optimal policy for the system [6]. Note also that

the operator p(i) in Algorithm 1 represents the parents of agent i defined by the DDN.

Figure 1. Dynamic Decision Network for star topology

4.2 Coordinated Reinforcement Learning

The first learning algorithm we present is Coordinated Reinforcement Learning [7]. Here, it is assumed

that the action-value function of each agent is associated with global reward and global temporal differ-

ence. That is, the total immediate reward obtained by the system is fed to all agents as if they are running

as a single agent system. Moreover, each agent grows by global temporal difference corresponding to the

global reward mechanism. The algorithm is shown in 2.

Here, one important point is how to get the values of Q(X,A), maxA′Q(S′, A′) and r(X) that are

using the joint state and action values. For the first one, we just apply simple message passing schema
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Algorithm 1: Value Iteration for Factored MDPs

while the policy is not good enough do

foreach i in Agents do

foreach xi in LocalStatesOfAgent i do

foreach ai in LocalActionsOfAgent i do

Qi(xi, p(i), ai) = ri(xi) + 0.95 ∗
∑

x′
i

∑
u′
i∈p(i)

Tr(xi, p(i), ai, x
′
i) ∗ hi(u′i, x′i)

end

hi(p(i), xi) = maxaiQ(xi, p(i), ai)

end

end

policy = variableElimination()

end

and pass current state, xi information between all agents. That will give current joint state, X, and will

be used for information of parents for each agent. Using the information of parents, each agent finds its

own Qi value and then pass this again as a message to the system resulting in a global Q value for joint

state and action. For the second one, on the other hand, we follow almost same procedure. Instead of

passing current state, xi values, agents send the next state, x′i values to each other. By using this joint

next state information, each agent returns its maximized local Qi value which results in global Q value

for joint next state X ′. The global immediate reward, r(X) can also be obtained by passing local reward

values between all agents and summing them up.

4.3 Sparse Cooperative Q-Learning

The second algorithm we show is Sparse Cooperative Q-Learning algorithm [9]. It uses very similar

decomposition schema to one in Section 4.2, however, it updates local Qi values based on local reward

value and local temporal difference instead of using global reward and temporal difference. The algorithm
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Algorithm 2: Coordinated Reinforcement Learning

foreach Episod do

foreach i in Agents do

Qi(xi, p(i), ai) = Qi(xi, p(i), ai) + α ∗ [r(X) + γ ∗maxA′Q(X ′, A′)−Q(X,A)]

end

end

is shown in 3.

Algorithm 3: Sparse Cooperative Q-Learning Algorithm

foreach Episod do

foreach i in Agents do

Qi(xi, p(i), ai) = Qi(xi, p(i), ai) + α ∗ [ri(xi) + γ ∗maxa′i(Qi(x
′
i, p(x

′
i), a

′
i))−Qi(xi, p(i), ai)]

end

end

Here, the information of parents is obtained just like in 4.2, by applying simple message passing

schema. One important point here is that the agents are assumed to have nothing with the other system

variables in terms of reward. That makes the update rule purely local and makes the agents affect only

themselves as the system runs.

4.4 Hybrid Learning

The last algorithm that we will present is a novel, Hybrid multiagent learning algorithm that is able to

combine different multiagent learning methods together. Hybrid approach exploits the locality principle

in multiagent learning algorithms. Since each agent keeps its own local Qi action-value function, the

method that is used to update the Qi’s may differ for different agents. Hence, Hybrid approach applies

different learning algorithms to different agents in the system with respect to the system definition.

Here, we have chosen the presented two multiagent algorithms, namely Coordinated RL and SparseQ
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Learning and apply them as following. Given the coordination graph for a multiagent system, the nodes,

corresponding to agents, having relatively large number of in-degree will use the update rule in CoordRL

algorithm and the nodes having relatively small number of in-degree will use the update rule in SparseQ

Learning algorithm. The algorithm is presented in 4. The motivation behind this combination method

is that CoordRL algorithm uses the global reward and temporal difference and will be more effective for

densely connected nodes; SparseQ Learning algorithm, on the other hand, uses local reward and temporal

difference and will be more effective for sparsely connected graphs. If the coordination graph defining

the network between the agents is composed of different types of subgraphs, we may run different types

of multiagent learning algorithm for different types of subgraphs.

Algorithm 4: Hybrid Learning Algorithm

foreach Episod do

foreach i in Agents do

if inDegree(i) ≥ threshold then

Qi(xi, p(i), ai) = Qi(xi, p(i), ai) + α ∗ [r(X) + γ ∗maxA′Q(X ′, A′)−Q(X,A)]

end

else

Qi(xi, p(i), ai) = Qi(xi, p(i), ai) +α ∗ [ri(xi) + γ ∗maxa′i(Qi(x
′
i, p(x

′
i), a

′
i))−Qi(xi, p(i), ai)]

end

end

end

5 Experimental Results

In this section, we will describe the experiments that we have done to understand the effecitivity of

algorithms explained in section 4. We have done all of the experiments on single problem instance,

System Administrator [5], with three different topologies.

11



The three different topologies are shown in Figure 2. There are star topology, 4-Clique topology and

combination of star and 4-Clique topology. The reason for choosing these three topologies is that we want

to have one sparse, one dense and one combined topology for being able to test presented algorithms

fairly. For a star of three agents and 4-Clique topologies we have applied Factored MDP, Coordinated

RL and SparseQ Learning algorithms. For three different combined topologies having 7, 10, 13, 19 and

34 agents, we have applied Coordinated RL, SparseQ Learning and Hybrid Learning algorithms. All

combined topologies contains one 4-Clique topology and one star topology including 3, 6, 9, 15 and

30 agents respectively. In order to compare the algorithms we have measured the running time of the

learning, and number of successfully completed jobs per agent for 100 runs of the optimal policy. For

the parameter setting, we have chosen α = 0.2 and γ = 0.9. Note that we have used ε-greedy approach

for all Q-learning algorithms and chosen ε = 0.3. We have applied 15000 iterations for each learning

algorithm. Note also that all experiments are repeated 10 times and the average of the 10 results are

reported in order to reduce the probabilistic nature of the results.

Figure 2. Topologies

In Figure 3, the results for the topology of star of three agents is shown. The first set of bars corresponds

to time results and second ones corresponds to the number of successfully completed jobs. It can be seen
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that Factored MDP solution achieves best result in terms of number of successfully completed jobs.

However, SparseQ algorithm has also very similar results to the Factored MDP solution. Beside running

time of SparseQ algorithm is much less than factored MDP solution. Coordinated RL, on the other hand,

has the lowest running time and achieved reasonably good score for this simple topology.

Figure 3. Simple Star Topology Results

Figure 4 shows the results for 4-Clique topology. Factored MDP solution failed to solve this topology

due to high value of in-degree per node. In star topology, the in-degree is at most 1; in 4-Clique topology,

however, it is 3. Since we have 9 state value per agent, and 2 action values, we should have 184 ∗ 94

many calculations for each agent. The latter 94 is for the all possible combination of next state values of

parents. The results for the learning algorithms show that Coordinated RL has given worse results than

the previous previous topology in terms of number of successfully completed jobs. The SparseQ, whereas,

gave almost same result with the previous topology. This is due to the fact that SparseQ does not depend

on the size or connectedness of topology, it only makes each agent run its own learning function without

being affected by the other parts of the network.

For the combined network, we have done two different types of experiments. The first one is same

as the previous experiments and applied to a combined network comprising of a star topology of 3

agents and a 4-Clique topology. While applying Hybrid Learning algorithm to a combined network, the
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Figure 4. 4-Clique Topology

agents that belong to star topology updates their Qi values by using SparseQ algorithm, whereas, the

agents that belong to Clique topology updates their Qi values by Coordinated RL algorithm. Thereby,

we used different learning approach in one problem setup. Figure 5 shows the results. Here, SparseQ

algorithm still performs best and has given almost same number of complete jobs with the previous

experiments, which validates the stability of SparseQ algorithm. The Hybrid Learning approach, on the

other hand, results in somewhere between SparseQ and CoordiantedRL. This is understandable since it

applies SparseQ algorithm to 3 agents of the system and Coordinated RL to 4 agents of the system. The

lowest running time belongs to Coordinated RL algorithm although the difference is not significance.

The second experiment on the combined network is about the number of agents in the system. We

have increased the number of agents in the star part of the combined topology and check the results of

three learning algorithms. The results are shown in Figure 6. Still the number of successfully completed

jobs per agent is almost same for SparseQ algorithm and Coordinated RL fails with respect to the other

algorithms. For the Hybrid algorithm, the result increases as the number of agents in star topology

increases. This is because the sparsity of the graph is increasing and the SparseQ part of the Hybrid

algorithm becomes dominant. For the topology having 15 agents in its star part, the different is not very

much, indeed.
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Figure 5. Combined Topology

Figure 6. Combined Topology for Different Number Of Agents
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6 Conclusion and Future Work

In this work, we have compared several multiagent planning and learning algorithms. Firstly, we

explained the Factored MDP solution to multiagent planning problem. Then, we have shown the Coor-

dinated Reinforcement Learning and Sparse Cooperative Q-Learning algorithms for multiagent learning

problem. Then, we have introduced a new Hybrid Learning approach that is combining both Coordi-

nated RL and SparseQ learning algorithms. It applies Coordinated RL to the dense graphs and SparseQ

Learning to sparse graphs. The algorithms are tested on single problem instance, System Administra-

tor, with three different topologies. The experimental results showed Factored MDP solution did not

finish except the star topology due to high number of in-degree per node in the topologies. Results also

showed that SparseQ learning algorithm always perform best among the learning algorithms. Although

the Hybrid approach always produces scores between Coordinated RL and SparseQ, as the sparsity of

the graph increases, it gets close to the SparseQ.

As future work, we may be interested in trying different combinations of learning algorithms for dif-

ferent types of topologies. We believe that the idea about hybridization of different multiagent learning

algorithms is very attractive. Hence, we will try to enhance the idea by using different types of decom-

position schema and experimental setups.
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