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• We are concerned with intractable problems whose
complexity may be described by exponential functions.
• The best known algorithms for them would require
many years or centuries of computer time for moderately
large inputs.
• These algorithms are useless except for very small
inputs.
• Here we present definitions aimed at distinguishing
between the tractable (i.e., “not-so-hard”) problems and
intractable (i.e., “hard”, or very time-consuming) ones.
• No reasonable fast algorithms for these problems have
been found, but no one has been able to prove that the
problems must require a lot of time.

The Theory of NP-Completeness
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• Because many of these problems are optimization
problems that arise frequently in applications, the lack of
efficient algorithms is of real importance.
• The theory of NP-Completeness does not provide a
method for obtaining polynomial time algorithms for
intractable problems; nor does it say that such algorithms
do not exist.
• What it does say is that many problems for which there
are no known polynomial time algorithms are
computationally related.
• Before we can proceed to define the properties of
algorithms that are known to be in P and that are
computationally related, we must introduce the concepts
of decision problems and nondeterminism.

The Theory of NP-Completeness
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• For deterministic algorithms, the outcome of every operation is uniquely
defined.

• For nondeterministic algorithms, the outcome of each operation is not
uniquely defined, but restricted to a specific set of possibilities.

• The (as yet non-existant and hypothetical) machine executing such
operations is allowed to choose any one of the allowed outcomes subject to
a terminating condition.

• A non-deterministic algorithm has two phases and an output step:
1. The non-deterministic “guessing” phase. Some completely arbitrary

string of characters, s, is written beginning at some designated place in
memory. Each time the algorithm is run, the string written may differ.
This string is the certificate; it may be thought of as a guess at a
solution for the problem, so this phase may be called the guessing
phase.

2. The deterministic “verifying” phase. Eventually, this phase returns a
value “true” or “false”- or it may get in an infinite loop and never halt.

3. The output step. If the verifying phase returned “true”, the algorithm’s
output is “success”. Otherwise it is “failure.”

Non-deterministic Algorithms
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Non-deterministic Algorithms: We can describe a non-deterministic algorithm
with an explicit procedure. Assume genCertif generates an arbitrary
certificate.

void nondetA(String input)
String s = genCertif();
Boolean CheckOK = verifyA(input,s)
If (checkOK)

Ouput “success”
Return;

• To make it easier to conceive of nondeterministic algorithms, it is useful to
introduce the following three hypothetical procedures which we cannot
actually process them on any known machine.
Choose (S): arbitrarily chooses one of the elements of the set S
Failure: signals an unsuccessful completion (a no answer)
Success: signals a successful completion (a yes answer.

• Choose can be thought of as knowing the criterion for success, generating all
of the possible choices in parallel, so is O(1).

Non-deterministic Algorithms
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Nondeterministic Algorithms: We can now formally define a nondeterministic
algorithm as follows:

• A non-deterministic algorithm is one that terminates unsuccessfully if and only
if there exist no set of choices leading to a successful signal.

• A machine capable of executing a nondeterministic algorithm is not known to
exist in practice. However, they can provide strong intuitive reasons to
conclude that fast deterministic algorithms cannot solve certain problems.

• Example: Consider the following nondeterministic algorithm for searching for
a target x in an unordered array A of n elements. It is required to determine an
index j such that A(j) = x or j = 0 if x is not in A.

j � Choose (1:n)  // Choose elements from A
If A(j) = x then 

begin  // if x was in A, then Choose found it
Print j; Success
end

//  If the algorithm did not terminate on success, then // 
print ‘0’, Failure

• From the way a nondeterministic algorithm is defined, the number ‘0’ can be
output if and only if there is no j such that A(j) = x.

• The complexity of this algorithm is O(1).
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• Note that Choose function does not itself indicate success or failure. The
algorithm must take the result of Choose function and check for success or
failure.

• Another useful way to view Choose is as an infinitely wise guesser (or
oracle) – if a correct guess can be made, Choose will make it.

• A deterministic interpretation of a nondeterministic algorithm can be made
by allowing unbounded parallelism in computation.

• We now combine the concept of decision problems and nondeterministic
algorithms. Consider the following nondeterministic algorithm for the 0-1
Knapsack Decision Problem.

Procedure Non-Bknap (p,w,n,m,Q,X);
For j = 1 to n do

X(j) = Choose (0,1)
If ∑1≤j≤n wixi > M or ∑1≤j≤n pixi < Q Then Failure
Else Success

• A successful termination is possible if and only if the answer to the decision
problem is “yes.” The complexity of the algorithm is O(n).

Nondeterministic Algorithms



NP-Complete, A.Yazici, Spring 2006 CEng 567
8

Non-deterministic Sorting:

Procedure Non-Sort (A,n);
// sort n positive integers in increasing order //
B(n) � 0 // initialize B to zero //
For j = 1 to n do

k = Choose (1:n)
If B(k) ≠0 Then Failure
B(k) � A(j)

repeat
For j = 1 to n-1 do // verify order //

If B(j) > B(j+1) Then Failure
repeat

print (B), Success

The complexity of non-deterministic sorting is O(n).

Non-deterministic Algorithms
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Defn: P is the set of all decision problems solvable by a
deterministic algorithm in polynomial time.

Defn: NP is the set of all decision problems solvable by a non-
deterministic algorithm in polynomial time. The abbreviation
NP stands for Nondeterministic Polynomial.

• Since a deterministic algorithm is just a special case of a
nondeterministic one, it is clear from the definitions that P ⊆NP.

• What we do not know and what is considered by many to be the
most famous open problem in CS is whether P = NP or P ≠ NP.

• Is it possible that for all of the problems in NP there exist
polynomial time deterministic algorithms that have remained
undiscovered?

• This seems rather unlikely because of the amount of effort that
has been expended to find such algorithms.

• Nonetheless, a proof that P ≠ NP has been just as elusive.

The Class P and NP
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Definition: A decision D problem is NP-Complete if the following two
properties hold:

1. D ∈ NP
2. ∀ D’ ∈ NP, D’∝ D

Property (2) requires that any problem D’ ∈ NP can be polynomially transformed
to the specific problem D.

• Thus, NP-Complete problems can be viewed as “the hardest” problems in
NP. If any single NP-Complete problem can be solved in polynomial time,
then so can all problems in NP.

Cook’s Theorem: While considering the P = NP question, S.A. Cook (Proc. of
the Third ACM Symposium on Theory of Computing, 1971, pp. 151-158)
formulated the following question:

• Is there a single problem in NP such that if we showed it to be in P, then that
would imply that P=NP?

• Cook answered his own question with his famous theorem:
The Satisfiability problem (SAT) is in P if and only if P = NP.

NP-Completeness
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• SAT is the following decision problem: Let x1, x2,…, xn be
Boolean (true and false) variables.

• Let ∼xi denote the negation of xi.
• A literal is then a variable or its negation.
• A clause is a disjunction,“or”, or conjunction,“and”, of the literals.
• A formula is a series of disjunctions and/or conjunctions of

clauses.
• If only disjunctions are used, the formulas are said to be in

disjunctive normal form (DNF) and if only conjunctions are used
the formula is in CNF.

• In mathematical terms, if ci are clauses and lij are literals, then
CNF can be represented as:

ci = ∨ lij
and the formula is

CNF = ∧ ci (product of elementary sums)
• For DNF, the ∨ and ∧ are interchanged.

Satisfiability Problem (SAT)
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Question: Is there a satisfying truth assignment? In other words,
for CNF, is there a choice of variables such that at least one
literal is true in each clause?

• An alternative statement of his theorem is:
SAT is NP-Complete.
• That is, in the process of proving his theorem, Cook showed

that all problems in NP could be polynomially transformed
to SAT.

Example: Variable x1 x2 x3 and the formula
(x1 ∨ x2) ∧ (∼x1 ∨ ∼x2 ) ∧ (x1 ∨ x3 ) ∧ (∼x1 ∨ ∼x3 )

• For this instance, if x1 = true, x2 = false, and x3 = false, then the
formula (or proposition) is true and the answer is “yes”

• Cook’s theorem has truly remarkable consequences in that it
delineates one simple problem as being archetypal of all
problems in NP. SAT is the common denominator!

NP-Completeness
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Outline of Proof of Cook Theorem: We will not show the proof of Cook’s
theorem because it is a number of typeset pages long. The general idea used
by Cook in the proof is as follows:

• First, Cook gives a full mathematical definition of a Turing machine, which
can read inputs, perform certain operations, and write outputs. When
endowed with the power of nondeterminism, a Turing machine can solve any
problem in NP.

• The next step in the proof is to describe each feature of the machine in terms
of logical formulas such as appear in SAT, including the way that
instructions are executed. In this way, a correspondence is established
between every problem in NP (which can be expressed as a program on the
nondeterministic Turing machine) and some instance of SAT (the translation
of that program into a logical formula).

• Now, the solution to SAT corresponds to a simulation of the Turing machine
running the program on the given input, so it produces a solution to an
instance of the given problem.

• The textbook by Garey and Johnson is a good source of the proof of Cook’s
theorem.

NP-Completeness
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• If every proof of NP-Completeness was as complicated as Cook’s
proof, not many problems would have been shown by now to be
NP-Complete.

• The process for proving a decision problem D to be NP-Complete:
1. Show that D is in NP
2. Select a known NP-Complete problem Dk
3. Construct a transformation Dk ∝ D
4. Prove that the transformation is O(p)

• Starting with SAT as the common denominator, researchers have
proven many decision problems to be NP-Complete by this
process.

• The most famous collection of these results are by Richard Karp
(“Reducibility among combinatorial problems,” in Complexity of
Computer Computations, 1972), where he proved 21 problems to
be NP-Complete.

• Many researchers begin their search for a suitable NP-Complete
problem to start from these basic NP-Complete Problems.

Proving NP-Completeness
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3-SAT: Same as SAT except that the number of variables is limited to 3.
3-Dimensional Matchning (3DM): Three sets U,V, W, each of cardinality m and

a collection M of sets (called triples), each of which contains three elements,
one each from U, V, and W.
Question: Do there exist m triples in M, say M1, M2, …, Mn, such that

M = ∪1≤j≤m Mj = U ∪ V ∪ W
In other words, does M contain a matching?

Vertex Cover (VC): A graph G having n vertices and an integer k; 0<k<n.
Question: Is there a subset S of k vertices in G such that every edge of G has at
least one endpoint in S? In other words, is there a set of less than n vertices
that touches all the edges.

Clique: A graph G with n vertices and an integer k; 0<k<=n.
Question: Does G contain a clique of size k or more? A clique is the maximal
subgraph of a graph that is complete (all vertices are connected to all other
vertices).

Hamiltonian Circuit (HC): A graph G
Question: Does G contain a Hamiltonian circuit?

Partition: A set of integers A.
Question: Can A be divided into two subsets whose sums are equal?

Proving NP-Completeness
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• The following diagram shows how the six basic problems have
been proved NP-Complete:

Proving NP-Completeness

SAT

3SAT

3DM VC

Partition CliqueHC

• We now show the first of these proofs, namely that 3SAT is NP-
Complete.
• The Garey and Johnson text is the most comprehensive source of
NP-Complete proofs as well as techniques for proving NP-
Completeness.
• Johnson has an on-going discussion of this topic in the Journal of
Algorithms.
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Example-1: 3-SAT is the following decision problem.

Instance: A collection C of disjunctive clauses, where each clause
contains exactly three literals.

Question: Is there a satisfying truth assignment for C?

• 3-SAT is a special case of CNF-SAT. It is important to note
that special cases of an NP-Complete problem are not
necessarily NP-Complete.

• For example, 2-SAT (where each clause has exactly 2 literals)
can be solved in polynomial time by a deterministic algorithm
and therefore, is in P.

Examples for the Proofs for NP-Completeness
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Theorem: 3-SAT is NP-Complete.
• We will use CNF-SAT as the known NP-Complete problem to be reduced

to the 3-SAT problem.
• First we need to show that the problem is non-deterministic.
• The following procedure is a polynomial time non-deterministic algorithm

that terminates successfully iff a given prepositional formula E(x1,…,xn).
Procedure EVAL-3SAT (E,n)
// non-deterministic 3-satisfiablity //
// Determine if the propositional formula E is satisfiable. The

variables are xj, 1≤ j ≤ n //
Boolean x(n)
For j � 1 to n do // choose a truth value assignment //

xj � Choice (true,false)
repeat
If E(x1,…,xn) is true then Success // satisfiable //
Else Failure

Endif
End EVAL-3SAT

Examples for the Proofs for NP-Completeness
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Theorem: 3-SAT is NP-Complete.

2. Select a known NP-Complete problem Dk
• We choose SAT as the known NP-Complete problem.

3. Construct a transformation Dk ∝ D
• As the third step of the proof, every instance of SAT problem

(a known NP-Complete problem) must be transformed into
that of 3-SAT problem (to be an NP-Complete problem),
where “yes” and “no” answers are preserved.

• It turns out that CNF-SAT can be reduced to 3-SAT.
• Given an instance I of SAT, we can construct an instance f(I)

of 3-SAT as follows:

Examples for the Proofs for NP-Completeness
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Theorem: 3-SAT is NP-Complete.

3. Construct a transformation D’ ∝ D
• Replace a clause {z} by four clauses {z,a,b}, {z,∼a,b},

{z,a,∼b}, {z,∼a,∼b}, where a and b are new Boolean variables.

• Replace a clause {z1,z2} by two clauses {z1,z2,c},{z1,z2,∼c},
where c is a new Boolean variable.

• Leave any clause {z1,z2,z3} unchanged.

• For any clause {z1,z2,…,zk}, where k > 3, replace it by k-2
clauses {z1,z2,c1}, {∼c1,z3,c2}, {∼c2,z4,c3}, {∼c3,z5,c4}, …,
{∼ck-4,zk-2,ck-3}, {∼ck-3,zk-1,zk}, where ci are new Boolean
variables.

Examples for the Proofs for NP-Completeness
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• We must now show that “yes” and “no” instances are preserved.
Suppose that I is a “yes” instance of CNF-SAT.

• We now show that f(I) is a “yes” instance of 3-SAT.
• {z} is satisfied only if z is true. If z is true, all four clauses

constructed in 3-SAT are also true since they all contain z, since
the clauses are disjunctive.

• {z1,z2} is satisfied if either z1 or z2 is true. Since the two clauses
constructed in 3-SAT contain both z1 and z2, they must both be
satisfied.

• This (3rd) case is trivial
• Suppose zi is true literal in {z1,z2,…,zk}, k>3. Then define:

cj = true, if j ≤ i-2
cm = false, if m > i-2

• The first i-2 clauses are satisfied since the cj are true.
• The (i-1)st clause is satisfied because zj is true.
• The remaining clauses are satisfied since ∼cm is true.
• Hence f(I) has a satisfying truth assignment if I of SAT does.

Examples for the Proofs for NP-Completeness
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• In order to prove that “no” instances are preserved, we have
two choices;
(1) we can show that if an individual clause is false then the

transformed one is false, or
(2) we can show that “yes” instances are preserved in the

reverse direction (3-SAT � SAT). [Consider contra-
positive rule, p � q ⇔ ~q � ~p.]

• This is a sufficient proof since the sequence Dk(no) � D(yes)
� Dk(yes), that is, SAT(no) � 3-SAT(yes) � SAT(yes) is
ruled out by contradiction.

• In other words, if we show that D(yes) � Dk(yes), that is,
3-SAT(yes) � SAT(yes), then “no” instances are also
preserved.

• The latter method is the one usually followed.

Examples for the Proofs for NP-Completeness
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• The proof that “yes” instances of 3-SAT transform to “yes” instances of CNF-
SAT is as follows:

• If the four clauses arising from {z} in 3-SAT are satisfied, then z must be true.
To see this, pick any arbitrary values for a and b; the only way all four clauses
can be true if {z} is true.

• If the two clauses {z1,z2,c} and {z1,z2,∼c} are true, then at least one of z1 or z2
must be true and thus {z1,z2} is satisfied.

• This is trivial again, {z1,z2,z3}↔{z1,z2,z3}
• Suppose that the k-2 clauses arising from a clause {z1,z2,…,zk}, k >3, are

satisfied. We must prove that at least one zi is true.
• Assume that all zi are false. Since {z1,z2,c1} is satisfied, c1 must be true. Then,

since {∼c1,z3,c2} is satisfied, c2 must be true.
• By continuing this way, we find that all ci must be true. However, then the last

clause {∼ck-3,zk-1,zk} is not satisfied. This contradiction proves that at least one
zi must be true and hence the clause {z1,z2,…,zk}, k >3, is satisfied.

• In summary, the way in which the instance of CNF-SAT was transformed into
3-SAT preserves “yes” and “no” instances.

Examples for the Proofs for NP-Completeness
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4. Prove that the transformation is O(p)

• This transformation is a polynomial time algorithm, which is
Θ(n) and is therefore a polynomial transformation.

This completes the proof.

Examples for the Proofs for NP-Completeness
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Example-2: A clique in an undirected graph G = (V,E) is a subset
V’ ⊆ V of vertices, each pair of which is connected by an edge
in E.

• That is, clique = {<G,k> : G is a graph with a clique of size k}.
• In other words, a clique is a complete subgraph of G.
• The size of a clique = the number of vertices that it contains.
• The Clique problem is the optimization problem of finding a

clique of maximum size in a graph. That is, a clique is the
maximal subgraph of a graph that is complete (all vertices are
connected to all of the other vertices).

• As a decision problem, is there a clique of a given size k exists
in the graph?

• Exhaustive algorithm is Ω(k2 C( |V|, k)), where C is used for
combination, and means that list all k-subsets of |V| and check
each one to see whether it forms a clique.

Examples for the Proofs for NP-Completeness
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Theorem: The Clique problem is NP-Complete.
• We will use 3-CNF-SAT as the known NP-Complete problem to be

reduced to the Clique decision problem (CLIQUE).
1. Show that CLIQUE ∈ NP.

Procedure CLIQUE (G,n,k)
S � ∅ // S is an initially empty set //

// the following is O(k) //
for j � 1 to k do // select k distinct vertices //

t � Choose(1:n)
If t ∈ S then Failure // not distinct k //

S � S ∪ t // add t to set S //
repeat // at this point S contains k distinct

vertex indices //
// The following is O(k2) //

for all pairs (j,m) such that j ∈S, m ∈S and j ≠ m do
if (j,m) is not an edge of the graph then Failure

repeat
Success

End // CLIQUE
Overall, this algorithm has time complexity O(max {n,k2}) = O(k2).

Examples for the Proofs for NP-Completeness
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Theorem: The Clique problem is NP-Complete.
2. 3-CNF-SAT ∝ CLIQUE ?
• Let F = C1 ∧ C2 ∧ … ∧ Ck be a Boolean formula in 3-CNF with

k clauses, l1,…,ln be literals in F, r = 1, 2, .., k, and each clause
Cr has exactly three distinct literals lr

1, lr
2, lr

3.
• We shall construct a graph G = (V,E) such that F is satisfiable

iff G has a clique of size k.
• For any F, the graph G = (V,E) is constructed as follows:
• For each clause Cr = (lr

1, lr
2, lr

3) in F, we place a triple of
vertices vr

1, vr
2, and vr

3 in V. We put an edge between two
vertices vr

i, and vs
m if the following rules hold:

1. vr
i and vs

m are in different triples, that is, r ≠ s, and
2. The corresponding literals are consistent, so, lr

i is not negation
of ls

m.
• This graph can easily be computed from F in polynomial time,

O(k), when the length of F is k.

Examples for the Proofs for NP-Completeness
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Theorem: The Clique problem is NP-Complete.
Example: Construction examples of G are shown below:

F1= (x1∨x2∨x3) ∧ (~x1∨~x2∨~x3)

F2=(x1∨x2∨x3) ∧ (~x1∨~x2∨~x3) ∧ (x1∨~x2∨x3).

Examples for the Proofs for NP-Completeness

<x1,1> <~x1 ,2>

<x2,1> <~x2 ,2>

<x3,1> <~x3 ,2>

<x1 ,3> <~x2 ,3> <x3 ,3>
<x1,1>

<x3,1>

<x2,1>

<~x1,2>

< ~ x2,2>

< ~ x3,2>

This graph contains six cliques of size two.
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• We must show that this transformation of F into G is a
reduction. So, if F is 3-CNF-SAT, G has a clique of size at
least k.

• Suppose that F has a satisfying assignment. Then each clause
Cr contains at least one literal lr

i that is assigned 1 (true) and
each such literal corresponds to a vertex vr

i.
• Picking one such “true” literal from each clause yields a set of

V’ of k vertices.
• We claim that V’ is a clique.
• For any two vertices, vr

i,vs
m∈V’, where r≠s, both

corresponding literals lr
i and ls

m are mapped to 1 by the given
satisfying assignment, thus the literals cannot be complements.

• Thus, by the construction of G, the edge (vr
i,vs

m) belongs to E.

Examples for the Proofs for NP-Completeness
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2. Conversely, we now show that if G has a clique V’ of size at least
k, then F is 3-CNF-Satisfiable.

• There cannot be an edge in G connect vertices in the same triple,
and so V’ contains exactly one vertex per triple.

• If G has a clique (V’,E) of size at least k, the number of vertices
in V’ must be exactly k.

• We can assign 1 to each literal lr
i such that vr

i ∈ V’ without fear
of assigning 1 to both a literal and its complement, since G
contains no edges between inconsistent literals. Each clause is
satisfied, and so F is satisfied.

• In the example, a satisfying assignment of F is <x1 = 1, x3 = 0>,
and a corresponding clique of size k = 2.

• Therefore, S is 3-CNF- Satisfiable. Hence, S is satisfiable iff G
has a clique of size at least k.

Examples for the Proofs for NP-Completeness
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• Garey and Johnson extended the theory of NP-Completeness to a theory of
NP-Hardness.

• They give a rigorous definition of NP-Hardness in terms of reducibility by a
special non-deterministic Turing Machine, called an Oracle Turing
Machine.
Defn: A problem L is NP-Hard iff ∀ problems ∈ NP ∝ L.
Defn: A problem L’ is NP-Complete iff L’ is NP-hard and L’∈ NP.

• It is easy to see that there are NP-Hard problems that are not NP-Complete.
• Although only decision problems can be NP-Complete (according to the

definition), we usually relax the definition and refer to the corresponding
optimization problem as being NP-Complete.

• The NP-Hard refers to a problem that all problems in NP can be reduced to,
but which itself is not in NP (remember that only decision problems can be
in NP).

• NP-Hard problems are at least as hard as NP-Complete problems.
• An optimization problem may be NP-Hard. There also exist NP-Hard

decision problems that are not NP-Complete.
• For example, Halting problem is an NP-Hard decision problem, but not NP-

Complete.

NP-Hard problems
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Halting problem: The halting problem is to determine for an arbitrary
deterministic algorithm A and input X whether an algorithm A with input X
ever terminates (or enters an infinite loop).

• It is known that this problem is undecidable. Hence there exist no algorithm
(of any complexity) to solve it. So, it is clearly cannot be in NP.

Idea of the proof: To show SAT ∝ Halting problem, simply construct an
algorithm A that tries out all 2n possible truth assignments and verifies if X
is satisfiable.

• If it is, then A stops. If X is not satisfiable, then A enters an infinite loop.
Hence A halts on input X iff X is satisfiable.

• If we had a polynomial time algorithm for the halting problem, then we
could solve the Satisfiability problem in polynomial time algorithm using A
and X as input to the algorithm for the Halting problem.

• Hence, the Halting problem is an NP-Hard problem that is not in NP.

NP-Hard problems
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NP-Complete and NP-Hard problems
NP

P

NP-Comp

NP-Hard

Relationships between P, NP, NP-Complete, and NP-Hard.
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Methods for Proving NP-Completeness
There are no truly standard approaches to prove a problem to be NP-Complete.
1. Restriction: This is the easiest NP-Completeness proof method, when it is

applicable. This method consists of showing that a problem to be proved NP-
Complete contains a special case of a known NP-Complete problem. For
example, the Directed Hamiltonian Cycle problem is proved to be the special
case of Undirected Hamiltonian Cycle, where each directed arc is
complemented by its opposite direction counterpart, which is identical to the
Undirected Hamiltonian Cycle problem.

2. Local Replacement: In this approach, we pick some aspect of the known NP-
Complete problem instance to make up a collection of basic units, and then
we obtain the corresponding instance of the target problem by replacing each
basic unit, in a uniform way, with a different structure. The transformation of
SAT to 3-SAT follows this approach. The basic units of an instance of SAT
were the clauses, and each clause was replaced by a collection of clauses of 3-
SAT clauses according to the same general rule.

3. Component design: This is the most difficult of the three popular proof
methods. The basic idea is to use the constituents (or components, parts) of
the target problem instance to design certain “components” that can be
combined to “realize” instances of the known NP-Complete problem.
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Using NP-Completeness to Analyze Problems

• When confronted with a new problem, if there is no obvious
polynomial time algorithm to solve it, the theory of NP-
Completeness allows us to use a two-pronged approach.

• On one hand, we should try to formulate a polynomial time
algorithm.

• Concurrently, we should try to construct a proof of NP-
Completeness.

• Unfortunately, the ultimate result might be elusive; the problem
might be in that group where, if P ≠ NP (as most of us believe),
it is neither NP-Complete nor is it polynomially solvable.

• This is not an effort to be taken on without luck, skill, and
perseverance.



NP-Complete, A.Yazici, Spring 2006 CEng 567
36

Methods for Dealing with NP-Complete Problems
• If a problem is known to be NP-Complete, do we just give up since we know

it is improbable that a polynomial algorithm can be found? Of course no!
First, it is important to understand that solving particular instances of an NP-
Complete problem need not be difficult.

• NP-Completeness says that we do not expect to find a polynomial time
algorithm for all instances. Often, special instances of an NP-Complete
problem can be solved readily. Recall, for example, the task scheduling
problem, which is NP-Complete. The special instances where all tasks lengths
are 1 (one) can be solved by a greedy algorithm in Θ(n2) time.

• Another approach to solving NP-Complete problems is to try to find a
polynomial time approximation algorithm. For example, recall the
multiprocessor-scheduling problem. A greedy algorithm is guaranteed to
produce a solution that is at most 1/3 longer than optimal.

• Methods that seek a “good” but not necessarily optimal solution in an
acceptable amount of time are referred to as “heuristic” algorithms.

• Other approaches to approximation algorithms use the following definition:
• Let ∋ be a positive real number. An algorithm A for a combinatorial

optimization problem is said to be an ∋-approximation algorithm if A always
finds a feasible solution having relative error at most ∋.
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Example for approximation algorithms

Example: A special case of TSP is the Euclidean TSP, where the
triangle inequality is satisfied. That is, for all vertices u, v, and
w, the following inequality is satisfied:

c(u,v) ≤ c(u.w) + c(w,v)
• This problem can be shown to be NP-Complete. An

approximation algorithm based on minimum spanning trees is as
follows:

APPROX-TSP-TOUR (G,c)
• Select a vertex r ∈ V[G] to be a “root” vertex
• Grow a MST T for G from root r using MST-PRIM (G,c,r)
• Let L be the list of vertices visited in a preorder tree walk of T
• Return Hamiltonian cycle H visiting the vertices in the order L
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Example for approximation algorithms
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Example for approximation algorithms

• This approximation algorithm based on using minimum
spanning trees can be shown to have a maximum relative error of
1 (∋ is 1.0).

• More particularly, if H is the approximation of Hamiltonian
cycle and Hopt is the optimum one, then it can be shown that
C(H) ≤ 2.c(Hopt)
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Example for approximation algorithms

Example: For the 0/1 Knapsack problem, an even more
interesting approximation algorithm has been developed by
defining an approximation problem as follows:

• The original problem with n objects, weights wi, profits pi, and
capacity M is approximated as a problem with n objects,
weights wi, profits pi/2k and capacity M, where k is a positive
integer. Thus, all we are doing is truncating the last k bits from
each pi.

• By using a modification of the dynamic programming
algorithm for BKP, it can be shown that the complexity of the
computations is Θ(n3/∋), where ∋ ≥ n.2k/pmax, where pmax is
the largest of the pi.

• Note that this does not imply a polynomial time algorithm for
BKP.
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