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Design and Analysis of Algorithms
• An algorithm is a set of instructions to be followed to solve a

problem. Another word, an algorithm is a complete set of rules
that transform the input into the output in a finite number of
steps.
– There can be more than one solution (more than one

algorithm) to solve a given problem.
– An algorithm can be implemented using different

programming languages on different platforms.
• An algorithm should correctly solve the problem.

– e.g., for sorting, this means even if (1) the input is already
sorted, or (2) it contains repeated elements.

• Once we have a correct algorithm for a problem, we have to
determine the efficiency of that algorithm.
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Design and Analysis of Algorithms
• Aspects of studying algorithms:
• 1. Designing algorithms:

• putting the pieces of the puzzles together,
• choosing data structures,
• selecting the basic approaches to the solution of the

problem,
• The most popular design strategies are divide&conquer, greedy,

dynamic prog., backtracking, and branch&bound.

• 2. Expressing and implementing the algorithm
• Concerns are:

• clearness
• conciseness
• effectiveness
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Design and Analysis of Algorithms
�3. Analyzing the algorithm
Algorithm analysis is assessing the time and space resources
required by an algorithm as a function of the size of the problem,
without actually implementing the algorithm.

�4. Compare UB and LB to see if your solution is good
enough

� Analyzing the algorithm gives us the upper bound to solve
the problem
� Analyzing the problem gives us the lower bound to solve the
problem

�5. Validate the algorithm
We show that the algorithm computes the correct answer for all
possible legal (or given) inputs
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Design and Analysis of Algorithms
6. Verifying the algorithm (or program)
An algorithm is said to be correct (verified) if, for every input
instance, it halts with the correct output.

7. Testing algorithms
There are two phases;
� Debugging: The process of executing programs on sample data sets
to determine if faulty results occur, and if so, to correct them.
“Debugging can only point to the presence of errors, but not to their
absence”

� Profiling: the process of executing a correct program on various
data sets and measuring the time (and space) it takes to compute the
results.



Design and Anaysis of Algorihms, A.Yazici, Spring 2005 CEng 567
6

Algorithmic Performance

There are two aspects of algorithmic performance:
• Time

• Instructions take time.
• How fast does the algorithm perform?
• What affects its runtime?

• Space
• Data structures take space
• What kind of data structures can be used?
• How does choice of data structure affect the runtime?

�We will focus on time:
– How to estimate the time required for an algorithm
– How to reduce the time required
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Analysis of Algorithms

• Analysis of Algorithms is the area of computer
science that provides tools to analyze the
efficiency of different methods of solutions.

• How do we compare the time efficiency of two
algorithms that solve the same problem?

Naïve Approach: implement these algorithms in
a programming language (i.e., C++), and run
them to compare their time requirements.
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Analysis of Algorithms
• Comparing the programs (instead of algorithms)

has difficulties.
– What data should the program use?

• Any analysis must be independent of specific data. Execution time is
sensitive to the amount of data manipulated, grows as the amount of
data increases.

– What computer should we use?
• We should compare the efficiency of the algorithms independently of

a particular computer. Because of the execution speed of the
processors, the execution times for an algorithm on the same data set
on two different computers may differ.

– How are the algorithms coded?
• Comparing running times means comparing the implementations.
• We should not compare implementations, because they are sensitive

to programming style that may cloud the issue of which algorithm is
inherently more efficient.

• ∴ absolute measure for an algorithm is not
appropriate
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Analysis of Algorithms

• When we analyze algorithms, we should employ
mathematical techniques that analyze algorithms
independently of specific implementations,
computers, or data.

• To analyze algorithms:
– First, we start to count the number of significant

operations in a particular solution to assess its
efficiency.

– Then, we express the efficiency of algorithms using
growth functions.
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What is Important?
• An array-based list retrieve operation is O(1), a linked-

list-based list retrieve operation is O(n).
• But insert and delete operations are much easier on a

linked-list-based list implementation.
� When selecting the implementation of an Abstract
Data Type (ADT), we have to consider how frequently
particular ADT operations occur in a given application.

• If the problem size is always very small, we can probably
ignore the algorithm’s efficiency.
– In this case, we should choose the simplest algorithm.
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What is Important? (cont.)

• We have to weigh the trade-offs between an algorithm’s
time requirement and its memory requirements.

• We have to compare algorithms for both style and
efficiency.
– The analysis should focus on gross differences in

efficiency and not reward coding tricks that save small
amount of time.

– That is, there is no need for coding tricks if the gain is
not too much.

– Easily understandable program is also important.
• Order-of-magnitude analysis focuses on large problems.
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Analysis of Algorithms
• A running time function, T(n), yields the time

required to execute the algorithm of a problem of
size ‘n.’

• Often the analysis of an algorithm leads to T(n),
which may contain unknown constants, which
depend on the characteristics of the ideal machine.
So, we cannot determine this function exactly.

• T(n) = an2 + bn + c, where a,b,and c are unspecıfıed
constants
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General Rules for Estimation

• Loops: The running time of a loop is at most the
running time of the statements inside of that loop times
the number of iterations.

• Nested Loops: Running time of a nested loop
containing a statement in the inner most loop is the
running time of statement multiplied by the product of
the sized of all loops.

• Consecutive Statements: Just add the running times
of those consecutive statements.

• If/Else: Never more than the running time of the test
plus the larger of running times of c1 and c2.
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The Execution Time of Algorithms
Example: Simple Loop

Cost Times
i = 1; c1 1
sum = 0; c2 1
while (i <= n) { c3 n+1

i = i + 1; c4 n
sum = sum + i; c5 n

}

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5
� The time required for this algorithm is proportional to n
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The Execution Time of Algorithms (cont.)
Example: Nested Loop

Cost Times
i=1; c1 1
sum = 0; c2 1
while (i <= n) { c3 n+1

j=1; c4 n
while (j <= n) { c5 n*(n+1)

sum = sum + i; c6 n*n
j = j + 1; c7 n*n

}
i = i +1; c8 n

}
Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8

� The time required for this algorithm is proportional to n2
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The Execution Time of Algorithms (cont.)

Example: Simple If-Statement
Cost Times

if (n < 0) c1 1
absval = -n c2 1

else
absval = n; c3 1

Total Cost <= c1 + max(c2,c3)
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Analysis of Algorithms

• We measure the complexity of an algorithm by identifying a
basic operation and then counting how any times the
algorithm performs that basic operation for an input size n.

problem input of size n basic operation

searching a list lists with n elements comparison

sorting a list lists with n elements comparison

multiplying two matrices two n-by-n matrices multiplication

traversing a tree tree with n nodes accessing a node

Towers of Hanoi n disks moving a disk
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Algorithm Growth Rates

• We measure an algorithm’s time requirement as a function of the
problem size.

– Problem size depends on the application: e.g. number of elements in a list for a
sorting algorithm, the number disks for towers of hanoi.

• So, for instance, we say that (if the problem size is n)
– Algorithm A requires 5*n2 time units to solve a problem of size n.
– Algorithm B requires 7*n time units to solve a problem of size n.

• The most important thing to learn is how quickly the algorithm’s
time requirement grows as a function of the problem size.

– Algorithm A requires time proportional to n2.
– Algorithm B requires time proportional to n.

• An algorithm’s proportional time requirement is known as
growth rate.
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Analysis of Algorithms
• The growth rate of T(n) is referred to the computational

complexity of the algorithm.
• The computational complexity gives a concise way of

saying how the running time, T(n), varies with n and is
independent of any particular implementation.

• We can compare the efficiency of two algorithms by
comparing their growth rates.

• The lower the growth rate, the faster the algorithm, at least
for large values of n.

• For example; T(n) = an2 + bn + c, the growth rate is O(n2)

• The goal of the algorithm designer should be an algorithm
with as low a growth rate of the running time function,
T(n), of that algorithm as possible.
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Algorithm Growth Rates (cont.)

Time requirements as a function
of the problem size n
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Common Growth Rates

CubicN3

Exponential2N

QuadraticN2

N log N
LinearN
Log-squaredlog2N
Logarithmiclog N
Constantc
Growth Rate NameFunction
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Growth-Rate Functions
O(1) Time requirement is constant, and it is independent of the problem’s size.

O(log2n) Time requirement for a logarithmic algorithm increases increases slowly
as the problem size increases.

O(n) Time requirement for a linear algorithm increases directly with the size
of the problem.

O(n*log2n) Time requirement for a n*log2n algorithm increases more rapidly than
a linear algorithm.

O(n2) Time requirement for a quadratic algorithm increases rapidly with the
size of the problem.

O(n3) Time requirement for a cubic algorithm increases more rapidly with the
size of the problem than the time requirement for a quadratic algorithm.

O(2n) As the size of the problem increases, the time requirement for an
exponential algorithm increases too rapidly to be practical.
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A Comparison of Growth-Rate Functions (cont.)
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Properties of Growth-Rate Functions

1. We can ignore low-order terms in an algorithm’s growth-rate
function.
– If an algorithm is O(n3+4n2+3n), it is also O(n3).
– We only use the higher-order term as algorithm’s growth-rate function.

2. We can ignore a multiplicative constant in the higher-order term
of an algorithm’s growth-rate function.
– If an algorithm is O(5n3), it is also O(n3).

3. O(f(n)) + O(g(n)) = O(f(n)+g(n))
– We can combine growth-rate functions.
– If an algorithm is O(n3) + O(4n), it is also O(n3 +4n2) � So, it is O(n3).
– Similar rules hold for multiplication.
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Problems with growth rate analysis

• An algorithm with a smaller growth rate will not run
faster than one with a higher growth rate for any
particular n, but only for n ‘large enough’

• Algorithms with identical growth rates may have
strikingly different running times because of the
constants in the running time functions.

– The value of n where two growth rates are the
same is called the break-even point.
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Algorithm Growth Rates (cont.)

Time requirements as a function
of the problem size n
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Figure 6.1
Running times for small inputs
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Figure 6.2
Running times for moderate inputs
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A Comparison of Growth-Rate Functions
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A Comparison of Growth-Rate Functions
Importance of developing Efficient Algorithms:
Sequential search vs Binary search
Array size No. of comparisons by seq. src No. of comparisons by bin. Srch
128 128 8
1,048,576 1,048,576 21
~4.109 ~4.109 33

Execution times for algorithms with the given time complexities:
n f(n)=n nlgn n2 2n

20 0.02 µs 0.086 µs 0.4 µs 1 ms
106 1µs 19.93 ms 16.7 min 31.7 years
109 1s 29.9s 31.7 years !!! centuries

Size of instance

Computation time (in sec)

104

103

102

1
10-1

10-4x2n

10-6x2n

10-2xn3

10-4xn3

1 day
1 hour

1 minute

1 second

5 10 20 40

Figure: Algorithms versus hardware
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Definition of the Orders of an Algorithm

ΟΟΟΟ-Notation: Given two running time functions f(n) and g(n), we say that f(n)
is Ο(g(n)) if there exists a real constant c ≥ 0, and a positive integer n0,
such that f(n) ≤ c.g(n) for all n ≥ n0

O-notation gives an upper bound for a function to within a constant factor.
Example: We want to show that 1/2n2+ 3n ∈ O(n2)

f(n) = 1/2n2+ 3n g(n) = n2

to show desired result, need c and n0 such that 0 ≤ 1/2n2 + 3n ≤ c.n2

try c =1
1/2n2 + 3n ≤ n2 3n ≤ 1/2n2 6 ≤ n i.e. n0 = 6.

cg(n)

f(n)

f(n) ∈ O(g(n))
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Order of an Algorithm

• Example: If an algorithm requires n2–3*n+10 seconds
to solve a problem size n. If constants k and n0 exist
such that

k*n2 ≥ n2–3*n+10 for all n ≥ n0 .
the algorithm is order n2 (In fact, k is 3 and n0 is 2)

3*n2 ≥ n2–3*n+10 for all n ≥ 2 .

Thus, the algorithm requires no more than k*n2 time
units for n ≥ n0 , So it is O(n2)
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Definition of the Orders of an Algorithm

ΩΩΩΩ- Notation: We say that f(n) is Ω(g(n)) if there exists a real
constant c ≥ 0, and positive integer n0, such that

c.g(n) ≤ f(n) for all n ≥ n0

Example: We show that n2 + 10n ∈ Ω(n2). Because for n ≥ 0, n2

+ 10n ≥ n2, we can take c = 1 and n = 0 to obtain the result.

f(n)

cg(n)

f(n) ∈ Ω(g(n))
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Relationships among ΟΟΟΟ, ΩΩΩΩ, and ΘΘΘΘ - Notations

• f(n) is Ο(g(n)) iff g(n) is Ω(f(n))

• f(n) is Θ(g(n)) iff f(n) is Ο(g(n)) and f(n) is Ω(g(n)),

• Θ(g(n)) = Ο(g(n)) ∩ Ω(g(n)),
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Definition of the Orders of an Algorithm

ΘΘΘΘ-Notation: If f(n) and g(n) are running time functions, then
we say that f(n) ∈ Θ(g(n)) if there exists positive real
constants c1 and c2, and a positive integer n0, such that

c1.g(n) ≤ f(n) ≤ c2.g(n)

for all n ≥ n0. That is, f(n) is bounded from above and below
by g(n). That is, Θ-notation bounds a function within
constant factors. f(n) always lies between c1.g(n) and c2.g(n)
inclusive.

c2g(n)

f(n)

c1g(n)

f(n) ∈ Θ(g(n))
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Analysis of Algorithms
Example: We want to show that 1/2n2 –3n = Θ(n2).

Solution: f(n) = 1/2n2 –3n g(n) = n2

To show desired result, we need determine positive constants
c1, c2, and n0 such that
0 ≤ c1. n2 ≤ 1/2n2 –3n ≤ c2.n2 for all n ≥ n0.

Dividing by n2, we get 0 ≤ c1 ≤ 1/2 –3/n ≤ c2

c1 ≤ 1/2 –3/n holds for any value of n ≥ 7 by choosing
c1 ≤ 1/14
1/2 –3/n ≤ c2 holds for any value of n ≥ 1 by choosing
c2 ≥ ½.

Thus, by choosing c1 = 1/14 and c2 = ½ and n0 = 7, we can
verify 1/2n2 –3n = O(n2). Certainly other choices for the
constants exist.
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Properties of ΘΘΘΘ-notation

• f(n) is Θ(f(n)) (reflexivity)
• f(n) is Θ(g(n)) iff g(n) is Θ(f(n)) (symmetry)
• If f(n) is Θ(g(n)) and g(n) is Θ(h(n)) then f(n) is

Θ(h(n)) (transitivity)
• For any c > 0, the function c.f(n) is Θ(f(n))
• If f1 is Θ(g(n)) and f2 is Θ(g(n)),

then (f1 + f2)(n) is Θ(g(n))
• If f1 is Θ(g1(n)) and f2 is Θ(g2(n)),

then (f1. f2)(n) is Θ(g1. g2(n))
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�ΟΟΟΟ-Notation (for two variables): Given two real-valued
functions g(n,m) and f(n,m) of two nonnegative
variables n and m, we say that g(n,m) and f(n,m) are
eventually nonnegative if there exists a positive number
n0 such that g(n,m) ≥ 0 whenever n ≥ n0 and m ≥ n0. We
say that f(n,m) is O(g(n,m) if the set O(g(n,m)) consists
of those eventually nonnegative functions f(n,m) ∈
O(g(n,m)) if, and only if, there exists positive integers c
and n0, such that

• f(n,m) ≤ c.g(n,m) for all n,m ≥ n0.
• The sets Θ(g(n,m)) and Ω(g(n,m)) are similarly defined.

The notions also extend to functions of more than two
variables

Definition of the Orders of an Algorithm
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Order of an Algorithm (cont.)
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Best, Worst and Average Case Analysis

An algorithm can require different times to solve
different problems of the same size.

Example: Searching an item in a list of n elements using
sequential search. � Cost: 1,2,...,n

We use the concepts of best-case, worst-case, and
average complexity of an algorithm.
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Best, Worst and Average Cases

Best-Case Analysis –The minimum amount of time that
an algorithm require to solve a problem of size n.

The best case behavior of an algorithm is NOT so
useful.

Let Ψn denote the set of all inputs of size n to an
algorithm and τ(I) denotes the number of basic
operations that are performed when the algorithm is
executed with input I, that varies over all inputs of size n.

Defn: Best-case complexity of an algorithm is the
function B(n) such that B(n) equals the minimum value
of τ(I). That is, B(n) = min {τ(I) | I ∈ Ψn}
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Best, Worst and Average Cases

Worst-Case Analysis –The maximum amount of time
that an algorithm require to solve a problem of size n.

This gives an upper bound for the time complexity of
an algorithm.

Defn: Worst-case complexity of an algorithm is the
function W(n) such that W(n) equals the maximum
value of τ(I). That is, W(n) = max {τ(I) | I ∈ Ψn}

Normally, we try to find worst-case behavior of an
algorithm.
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Best, Worst and Average Cases
Average-Case Analysis –The average amount of time that an
algorithm require to solve a problem of size n. Sometimes, it is
difficult to find the average-case behavior of an algorithm.

We have to look at all possible data organizations of a given
size n, and their distribution probabilities of these
organizations.

Defn: Average complexity of an algorithm with finite set Ψn is
defined as A(n) = ∑ τ (I) p(I); I∈τn
Average complexity A(n) is defined as the expected number of
basic operations performed.
• p(I) is the probability of occurring each I∈Ψn as the input to
the algorithm. Alternatively,
• A(n) = (t1+…+tg(n)) / g(n), (t1+…+tg(n)) covers all different
cases.

Worst-case analysis is more common than average-case
analysis.
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Analysis of Algorithms
• We shall usually concentrate on finding only the worst-case running time

(W(n)), that is, the longest running time for any input of size n. The reasons
for that:
– The worst-case running time of an algorithm is an upper bound on the

running time for any input. Algorithm will not take longer (we hope).
– For some algorithms, the worst-case occurs fairly often, e.g., searching

databases, absent information.
– The average case is often roughly as bad as the worst case.

Algorithm B(n) A(n) W(n)
Linear Search 1 n n
BinarySearch 1 logn logn
Max,Min,MaxMin n n n
InsertionSort n n2 n2

QuickSort nlogn nlogn n2

Towers 2n 2n 2n

Figure: Order of best-case, average, and worst-case complexities
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Analysis of Algorithms

An Example: Sorting Problem
Input: A sequence of n numbers <a1, a2, …, an>.
Output: A permutation (reordering) <a’1, a’2, …, a’n> of the input
sequence such that a’1 ≤ a’2≤ … ≤ a’n.
An example sorting algorithm: Insertion sort:
Insertion-Sort uses an incremental design approach: having sorted the

subarrays A[1..j-1],
we insert the singles element A[j], into its proper place, yielding the sorted

subarray A[1..j].

Array A[1..n] contains a sequence of length n that is to be sorted.
An example:

5 2 4 6 1 3
2 5 4 6 1 3
2 4 5 6 1 3
1 2 4 5 6 3
1 2 3 4 5 6

‘ ‘ represents the position of index j.
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Insertion-Sort (A) cost times
// sort in increasing order //

1 for j � 2 to length[A] c1 n
2 do key � A[j] c2 n-1
3 // insert A[j] ınto the sorted sequence A[1..j-1] //
4 i � j –1 c4 n-1
5 while i > 0 and A[i] > key c5 ∑2<j<n tj
6 do A[i+1] � A[i] c6 ∑2<j<n (tj-1)
7 i � i –1 c7 ∑2<j<n (tj-1)
8 A[i+1] � key c8 n-1
Analysis of Insertion sort algorithm:
T(n), the running time of insertion sort is the sum of products of the cost and times.
T(n) = c1n+c2(n-1)+c4(n-1)+c5∑2<j<n (tj)+c6∑2<j<n (tj-1)+c7∑2<j<n (tj-1)+c8(n-1)
tj =1 for j = 2,..,n for the best case, array is already sorted,

T(n) = c1n + c2(n-1) + c4(n-1) + c5(n-1) + c8(n-1 = (c1+c2+c4+c5+c8)n -
(c1+c2+c4+c5+c8), that is, T(n) Θ(n)

tj =j for j = 2,..,n for the worst case, array is reverse sorted,
∑2<j<n j = (n(n+1)/2) –1 and ∑2<j<n j-1 = n(n-1)/2
T(n) = c1n + c2(n-1)+c4(n-1)+c5((n(n+1)/2)–1)+c6(n(n-1)/2)+c7(n(n-1)/2)+c8(n-1)
= (c5/2+c6/2+c7/2)n2+(c1+c2+c4+c5/2-c6/2-c7/2+c8)n–(c2+c4+c5+c8),which is

Θ(n2).
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Definition of the Orders of an Algorithm

o- Notation: f(n) is o(g(n)), “little-oh of g of n” as the set o(g(n)) =
{f(n) : for any positive constant c > 0, there exists a constant n0
≥ 0 such that

0 ≤ f(n) < c.g(n) for all n ≥ n0}
• We use o-notation to denote an upper bound that is not

asymptotically tight, whereas O-notation may be asymptotically
tight. Intuitively, in the o-notation, the function f(n) becomes
insignificantly relative to g(n) as n approaches infinity, that is,

lim n � ∞ f(n)/g(n) = 0
Ex: 2n = o (n2), but 2n2 ≠ o(n2)
Ex: n2 /2 ∈ o(n3), since lim n � ∞ (n2 /2)/ n3 = lim n � ∞ 1 / 2n = 0

Proposition: f(n) ∈ o(g(n)) ⇒ O(f(n)) ⊂ O(g(n))
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Definition of the Orders of an Algorithm

ωωωω - Notation: f(n) is ω(g(n)), “little-omega of g of n” as the set
ω(g(n)) = {f(n) : for any positive constant c > 0, there exists a
constant n0 ≥ 0 such that

0 ≤ c.g(n) < f(n) for all n ≥ n0}

ω-notation denotes a lower bound that is not asymptotically tight.
The relation f(n) = ω (g(n)) implies that,

lim n � ∞ f(n)/g(n) = ∞, if the limit exists.

That is, f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity.

Ex: n2/2 = ω(n), but n2/2 ≠ ω(n2)
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Definition of the Orders of an Algorithm

Example: Factorials, n!, n ≥ 0
n! = 1 if n = 0,

n*(n-1)! if n >0
• A weak upper bound on the factorial function is n! ≤ nn, since

each n terms in the factorial product is at most n.
• Stirling’s approximation is n! = √2πn (n/e)n (1+Θ(1/n)),

which gives a tighter upper bound, and a lower bound as well.
Using Stirling’s approximation, one can prove

n! = o (nn), n! = ω(2n), lg(n!) = Θ(nlgn)

The following bounds also hold for all n: √2πn (n/e)n ≤ n! ≤
√2πn (n/e)n+(1/12n)
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Definition of the Orders of an Algorithm

Definition: Given the function g(n), we define ~(g(n) to be the
set of all functions f(n) having the property that

lim n � ∞ f(n)/g(n) = 1,

If f(n) ∈ ~g((n)), then we say that f(n) is strongly asymptotic to
g(n) and denote this by writing f(n) ~ g(n).

Ex: n2 = ~ (n2), since lim n � ∞ n2/ n2 = 1,

Property: f(n) ~ g(n) ⇒ f(n) ∈ Θ(g(n))
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�Definition: A function f(n) is said to grow slower
than a function g(n) (or, g(n) grows faster than
f(n)), denoted by f(n)g(n), where the relation  is
a partial ordering, if lim n � ∞ f(n)/g(n) = 0.

For example, g(n) = n2 grows faster than f(n) = n
since lim n � ∞ n/ n2 = lim n � ∞ 1/ n = 0.

• We write f(n) = o(g(n)) if f(n) g(n), and
• f(n) = O (g(n)) if for some constant c and almost

all n ≥ 0 (for all, but finitely many n ≥ 0),
f(n) ≤ c.g(n).

Definition of the Orders of an Algorithm
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�The following sequences of functions appear
very often in the study of computational
complexity:

– Poly-log sequence: {(lgn)i | i = 1, 2, …}
– Polynomial sequence: {ni | i = 1, 2, …}
– Subexponential sequence: {n(logn)i | i = 1, 2, …}
– Exponential sequence: {(2ni | i = 1, 2, …}
– Superexponential sequence: {2ni | i = 1, 2, …}

Definition of the Orders of an Algorithm
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• These sequences satisfy the following properties:
� In each sequence, if i < j, then ith function grows slower than

the jth function. For instance, n(logn)3  n(logn)4 .
�For each sequences, every function in the former sequence

grows slower than any function in the latter sequence (except
for the first function of the last sequence). For instance, lgn64

 n10  n(logn)4  23n  2n2.
• These five sequences do not contain all possible measurement

for growth rates. There are other examples not in these
sequences.
�For example, the function T(n) = 2√logn grows slower than

every function in the polynomial sequence, but faster than
every function in the poly-log sequence. That is, (logn)i 
2√logn  n.

We can show this by the following:
lim n � ∞ (logn)i / 2√logn = 0 and lim n � ∞ 2√logn /n = 0

Definition of the Orders of an Algorithm
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Orders of Algorithms
Theorem: Let the polynomial

P(n) = aknk+ ak-1nk -1 +…+ a2n2 + a1n + a0
be degree of k, ak > 0. Then, P(n) is Θ( nk).
Proof: It is sufficient to show that P(n) ∈ O(nk) and P(n) ∈ Ω(nk). We first show that

P(n) ∈ O(nk).
P(n) = aknk+ ak-1nk -1 +…+ a2n2 + a1n + a0
≤ ak nk + |ak-1| nk +…+ |a1| nk + |a0| nk ≤ (|a0| + |a1| + |a2| + … + |ak-1| + ak) nk

Thus, if c = (|a0| + |a1| + |a2| + … + |ak-1| + ak), then P(n) ≤ c.nk for all n ≥ n0 = 1, so that
p(n) ∈ O (nk).
We now show that P(n) ∈ Ω(nk).
P(n) = a0 + a1n + a2n2 + … + ak-1nk -1 + aknk

≥ ak nk - |ak-1| nk-1 - …- |a1| n1 - |a0| n0 = (ak/2) nk + [(ak/2) nk - |ak-1| nk-1- … - |a2|n2 - |a1| n
- |a0| ]

≥ (ak/2) nk + [(ak/2) nk – |ak-1| nk-1- … - |a2|nk-1 - |a1| nk-1 - |a0| nk-1 ]
= (ak/2) nk + [(ak/2) n – (|ak-1| + … +|a2| + |a1| + |a0|)] nk-1

Thus, if c = ak/2 and n0 = (|ak-1| + … +|a2| + |a1| + |a0|)] (2/ak), the term inside the bracket
in the last equation is nonnegative for all n ≥ n0, and hence P(n) ≥ c.nk for all n ≥ n0.
This shows that P(n) ∈ Ω(nk).

Therefore, P(n) is Θ( nk).
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Orders of Algorithms
Proposition: P(n) = aknk + ak-1nk -1 +… + a1n + a0 be any polynomial of degree of k, ak > 0.

Then, P(n) ~ aknk

Proof: Consider the ration (aknk + ak-1nk -1 +… + a1n + a0) / aknk as n tends to go infinity:
lim n � ∞ (aknk + ak-1nk -1 +… + a1n + a0) / aknk

= lim n � ∞ (1 + ak-1 / akn +… + a1 / aknk-1 + a0 /aknk) = 1.

Proposition: For any nonnegative real constants k and a, with a >1, O(nk) ⊂ O(an).
Proof: Consider the ration nk/an. Repeated applications of L’Hopital’s Rule yields

lim n � ∞ nk/an = lim n � ∞ knk-1/(lna)an

= lim n � ∞ k(k-1)nk-2/(lna)2an

…

…

= lim n � ∞ k!/(lna)kan

= 0.
Hence, nk∈ o(an).

Since, if f(n) ∈ o(g(n)) ⇒ O(f(n) ⊂ O(g(n)), it is true that O(nk) ⊂ O(an).
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Orders of Algorithms

Proposition: L(n) = log(n!) ∈ Θ(nlogn).
Proof: L(n) = log1 + log2 + …+ logn.
Clearly, L(n) ∈ O(nlogn), since
L(n) = log1 + log2 + …+ logn ≤ logn + logn + …+ logn = nlogn,
So that L(n) ∈ O(nlogn).

It remains to show that L(n) ∈ Ω(nlogn). Let m = n/2. We have
L(n) = (log1 + log2 + …+ logm) + [log(m +1) + log(m+2)+ …+ logn]

≥ log(m +1) + log(m+2)+ …+ logn
≥ log(m +1) + log(m+1)+ …+ log(m+1)
= (n-m)log(m +1)
≥ (n/2)log(n/2) =(n/2)(logn –log2)

Clearly, (n/2)(logn –log2) ≥ (n/2)[logn – (½)logn) for all n ≥ n0, where n0 is
sufficiently large (the constant n0 depends on the base chosen).
Thus, L(n) ≥ (1/4)(nlogn), so that L(n) ∈ Ω(nlogn).

� Therefore, log(n!) ∈ Θ(nlogn).
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Orders of Algorithms
Theorem: The function h(n) = ∑1≤i≤n (1/i) = 1 + ½ + … + 1/n is P(n) is Θ(

lgn).
Proof: Values c1, c2, and n0 can be arrived at by finding upper and lower

bounds for h(n) using only terms of the form 1/2j as follows:
1 + ½ + ¼ + ¼+1/8+1/8+1/8+1/8+ … + 1/2k

≤ 1 + ½ + 1/3+ ¼ + 1/5 + … + 1/2k = h(2k)
≤ 1 + ½ + ½ + ¼ + ¼ + ¼ + ¼ + 1/8 + ….+ 1/2k

The first and third sums can be evaluated and inequalities become:
1+ k/2 ≤ h(2k) ≤ k + 1/2k

For an integer n, let k = lgn, 2k = n; then
1 + lgn / 2 ≤ h(n) ≤ lgn + 1/n,

If we use the following inequilities: lgn > 1/n and lgn / 2 < 1 + k/2, then
½(lgn) ≤ h(n) ≤ 2(lgn)

Therefore, h(n) = Θ(lgn), c1 = ½, c2 = 2, n0 = 1.
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Orders of Algorithms
Arithmetic sequence: S(n) = ∑1≤i≤n-1 a + id = na + d ∑1≤i≤n-1 i,
where a and d are real constants; d is called the difference of the sequence,

since consecutive terms differ by d. If we solve this, we find S(n) = na +
d.n.(n-1)/2. Here S is a polynomial of degree 2, which implies that S is
Θ(n2)

Geometric sequence: G(n) = ∑0 ≤i≤n-1 ari = ar0 + ar +… +arn-1 where r is a
real constant, called the ratio of the sequence. Multiplying both sides by r,
rG = ∑0≤i≤n-1 ari+1 = ar + ar2 +… +arn = -a + a + ar + ar2 +… +arn

rG = G + arn – a
G = (arn – a)/(r-1) = a(rn – 1) / (r-1) if r ≠ 1.

Note that G = an if r = 1.
In conclusion

G is Θ(n) if r = 1
G is Θ(rn) if r ≠ 1
G is O(1) if r < 1
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Orders of Algorithms

Growth rates of some other functions
1. f(n) = ∑1≤i≤n i = n(n+1)/2
2. f(n) = ∑1≤i≤n i2 = n(n+1)(2n+1)/6
2’. f(n) = ∑1≤i≤n ik = [1/(k+1)] (nk+1)
3. f(n) = ∑0≤i≤n xi = (xn+1 –1)/ (x –1)
4. f(n) = ∑0≤i≤n 2i = (2n+1-1)/ (2–1) = 2n+1-1
Sample Algorithm analysis:
The sum rule:
Given the a functions f1,f2,…,fa, where a is constant, if fi = O(gi), ∀i ≤ n, then

∑1≤i≤afi = O(gm)
where gm is the fastest growing of the functions g1,g2,…,ga.
The product rule:
If fi = O(gi), ∀i ≤ n, where a is constant, then
Π1≤i≤afi = O(Π1≤i≤agi)
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Some Mathematical Facts

• Some mathematical equalities are:
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Growth-Rate Functions – Example1

Cost Times
i = 1; c1 1
sum = 0; c2 1
while (i <= n) { c3 n+1

i = i + 1; c4 n
sum = sum + i; c5 n

}

T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5
= (c3+c4+c5)*n + (c1+c2+c3)
= a*n + b

� So, the growth-rate function for this algorithm is O(n)
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Growth-Rate Functions – Example2

Cost Times
i=1; c1 1
sum = 0; c2 1
while (i <= n) { c3 n+1

j=1; c4 n
while (j <= n) { c5 n*(n+1)

sum = sum + i; c6 n*n
j = j + 1; c7 n*n

}
i = i +1; c8 n

}
T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8

= (c5+c6+c7)*n2 + (c3+c4+c5+c8)*n + (c1+c2+c3)
= a*n2 + b*n + c

� So, the growth-rate function for this algorithm is O(n2)
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Growth-Rate Functions – Example3

Cost Times
for (i=1; i<=n; i++) c1 n+1

for (j=1; j<=i; j++) c2

for (k=1; k<=j; k++) c3

x=x+1; c4

T(n) = c1*(n+1) + c2*( ) + c3* ( ) + c4*( )

= a*n3 + b*n2 + c*n + d
� So, the growth-rate function for this algorithm is O(n3)
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Orders of Algorithms
Example:

For k = 1 to n/2 do
{
….

}
For j = 1 to n*n do

{
----

}
∑n/2

k=1 c + ∑n*n
j=1 c = c.n/2 + c.n2 = O (n2)

Example:
For k = 1 to n/2 do
{

For j = 1 to n*n do
{

----
}

}

∑n/2
k=1∑n*n

j=1 c= c.n/2 *n2 = O(n3)
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Orders of Algorithms
Example:

i = n
while i > 1 do
{

i = i div 2
}

64 32 16 8 4 2 1
∑ n

i=2(1/2i) = O(log2n)
Example:

For i = 1 to n do
For j = i to n do

For k = i to j do
m =m + i + j + k

∑n
i=1∑n

j=i ∑j
k=i3 ≈ n3/10 additions, that is O(n3)

∑n
i=1∑n

j=i 3(j-i +1) = ∑n
i=1[3 ∑n

j=i j - 3∑n
j=i i + 3∑n

j=i 1]
= ∑n

i=1[3(∑n
j=1 j -∑i-1

j=1 j) – 3i(n-i+1) + 3(n-i +1)]
= ∑n

i=1[3[(n(n+1))/2 – (i(i-1))/2)] – 3i(n-i+1) + 3(n-i+1)]
≈ n3/10 additions, that is, O(n3)
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Growth-Rate Functions – Recursive Algorithms

void hanoi(int n, char source, char dest, char spare) { Cost
if (n > 0) { c1
hanoi(n-1, source, spare, dest); c2
cout << "Move top disk from pole " << source c3

<< " to pole " << dest << endl;
hanoi(n-1, spare, dest, source); c4

} }

• The time-complexity function T(n) of a recursive algorithm is
defined in terms of itself, and this is known as recurrence equation
for T(n).

• To find the growth-rate function for that recursive algorithm, we
have to solve that recurrence relation.
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Growth-Rate Functions – Hanoi Towers

• What is the cost of hanoi(n,’A’,’B’,’C’)?

when n=0
T(0) = c1

when n>0
T(n) = c1 + c2 + T(n-1) + c3 + c4 + T(n-1)

= 2*T(n-1) + (c1+c2+c3+c4)
= 2*T(n-1) + c � recurrence equation for the growth-rate

function of hanoi-towers algorithm

• We have to solve this recurrence equation to find the growth-rate function of
hanoi-towers algorithm
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Recurrences
There are four methods for solving recurrences, which is for obtaining

asymptotic Θ and O bounds on the solution.

1. The iteration method converts the recurrence into a summation and
then relies on techniques for bounding summations to solve the
recurrence.

2. In the substitution method, we guess a bound and then use
mathematical induction to prove our guess correct.

3. The master method provides bounds for recurrences of the form
T(n) = aT(n/b) + f(n) where a ≥ 1, b ≥ 2, and f(n) is a given

function.
4. Using the characteristic equation.
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2 Solving recurrences by iteration method: converts the recurrence into a
summation and then relies on techniques for bounding summations to solve the
recurrence.
Example: The recurrence arises for a recursive program that makes at least n
number of disk moves from one peg to another peg and then move them to the
third one.

tn = 2tn-1 + 1, n ≥ 2, subject to t1 = 1.

tn = 2tn-1 + 1 = 22tn-2 + 2 + 1 = ... = 2n-1t1 + 2n-2 + ... + 2 + 1
= 2n - 1. � tn ∈ O(2n).

� This is the minumum number of moves required to transfer n disks from one peg
to another. Indeed, before this move, we must first move all other disks to the
third disk and also, after the move of the largest disk, we must move all other
disks to the top of the largest disk.

� Therefore, the minimum number f(n) of moves satisfies the following inequality:
f1 = 1 and fn ≥ 2fn-1 + 1, n ≥ 2.

Thus, fn ≥ tn = 2n - 1 � fn ∈ O(2n)

For n = 64, it takes 584 * 106 years if every 1000 moves takes 1 seconds.

Recurrences (cont.)
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2 Example: The recurrence arises for a recursive program that loops
through the input to eliminate one item:
tn = tn-1 + n n ≥ 2, subject to t1 = 1.

To solve such a recurrence, we “telescope” it by applying it to itself, as
follows:
tn = tn-1 + n
tn = tn-2 + (n-1) + n
tn = tn-3 + (n-2) + (n-1) + n
……
tn = t1 + 2+ … + (n-2) + (n-1) + n
tn = 1 + 2+ … + (n-2) + (n-1) + n
= n(n+1)/2

Hence, tn ∈ Θ(n2/2)

Recurrences (cont.)
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Example: The recurrence arises for a recursive program that has to
make a linear pass through the input, before, during, or after it is split
into two halves:
tn = 2tn/2 + n n ≥ 2, subject to t1 = 0.

To solve such a recurrence, we assume that n = 2k (k = lgn) and then
“telescope” it by applying it to itself, as follows:
tn = 2(2tn/4 + n/2) + n
= 4tn/4 + 2n/2 + n = 4tn/4 + n (1+ 1)
= 4(2tn/8 + n/4) + 2n/2 + n
= 8tn/8 + 4n/4 + 2n/2+ n = 8tn/8 + n (1+ 1 + 1)
….
= ntn/n + n(1+…+1)
= 2kt1 + n.k
tn = 0+ n(lgn)

Hence, tn ∈ Θ(nlgn)

Recurrences (cont.)
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2 Solving recurrences by substitution (guess) method: Guesses a bound
and then use mathematical induction to prove the guess correct.

Example: The recurrence arises for a recursive program that halves the input
in one step:

tn = tn/2 + c n ≥ 2, subject to t1 = 1.
t2 = 1 + c
t4 = 1 + 2c, t8 = 1 + 3c, ….
tk = 1 + kc, where n = 2k , tn = 1 + c.lgn, Therefore, tn ∈ Θ(lgn)

Proof by induction:
Base case: n=1, t1 = 1 is given
Induction case: n=k, tk = 1 + kc, where n = 2k , for tk = tk/2 + c, is true
Proof: n=k+1, tk+1 = 1 + (k+1)c = 1+ kc + c ???

From the given recurrence
(tk+1= T(2k+1) = T (2k+1/ 2)+c= T(2k)+c)= tk+c= 1+kc + c (by the

induction step).
Therefore, tn = 1 + c.lgn, for n = 2k

Recurrences (cont.)
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� Example: The recurrence arises for a recursive program that
halves the input in one step, applies to 3 subproblems and loops
through each input:

tn = 3tn/2 + cn n ≥ 2, subject to t1 = 1.
t2 = 3 + 2c
t4 = 9 + 10c
t8 = 27 + 38c
t16 = 81 + 130c
….
t2k = 3k + 2kc [(3/2)k –1] / [(3/2) –1], where n = 2k and k = lgn
tn = 3lgn + cn(3lgn/n - 1) / 1/2
tn = n1.59 + 2cn (n0.59 – 1), where 3lgn = nlg3 = 31.59

= n1.59 (1 + 2c) – 2cn
tn ∈ Θ(n1.59)

Recurrences (cont.)
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3 Solving recurrences by master method:
The master method depends on the following theorem:
Master theorem: Let a ≥ 1 and b ≥ 2 be constants and let T(n) be a function,

and let T(n) be defined on the nonnegative integers by the recurrence
T(n) = aT(n/b) + cni (n > n0), when n/ n0 is a power of b.

Show that the exact order of T(n) is given by
ΘΘΘΘ(nilogbn) case 1: a = bi, i =logba

T(n) ∈ ΘΘΘΘ(nlogba) case 2: a > bi, i <logba
ΘΘΘΘ(ni) case 3: a < bi, i >logba

Example: The recurrence arises for a recursive program that halves the input,
but perhaps must examine every item in the input:
tn = tn/2 + n for n ≥ 2, subject to t1 = 0.

For this recurrence, a = 1, b = 2, i = 1, and thus case 3: a < bi applies and
tn ∈ Θ(n)

Example: The recurrence arises from matrix multiplication:
tn = 8tn/2 + cn2 n ≥ 2, subject to t1 = 1.

For this recurrence, a = 8, b = 2, i = 2, and thus case 3: a > bi applies and
tn ∈ Θ(nlog28) = Θ(n3)

Recurrences (cont.)
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Master Theorem (Another Version (text book): let a ≥ 1 and b>1 be constants,
let f(n) be a function, and T(n) be defined on the nonnegative integers by the
recurrence

T(n) = aT(n/b) + f(n), a ≥1 and b > 1.

� The function divides the problem of size n into a subproblems, each of size
n/b. The subproblems are solved recursively each in time T(n/b). The cost of
dividing the problem and combining the results of the subproblems is
described by the f(n). We interpret n/b to mean either n/b or n/b, which
does not affect the asymptotic behaviour of the recurrence.

T(n) can be bounded asymptotically as follows:
1. If f(n) = Ο(nlogba - ε) for some constant ε>0, then T(n)= Θ(nlogba).
2. If f(n) = Θ(nlogba ), then T(n) = Θ(nlogbalgn).
3. If f(n) = Ω(nlogba + ε) for some constant ε>0, and af(n/b) ≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T(n) = Θ(f(n)).
� Intuitively, the solution to the recurrence is determined by the larger of the two

functions, f(n) and nlogba. In case 1, not only must f(n) be smaller than nlogba, it
must be polynomially smaller. That is, f(n) must be asymptotically smaller than
nlogba by a factor of nε for some constant ε > 0. Similar technicality is valid for
case 3, in addition satisfy the “regularity” condition that af(n/b) ≤ cf(n).
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The three cases do not cover all the possibilities for f(n).

Example: The recurrence arises for a recursive program that divides the
input into three and solves 9 of sub probles, and perhaps must examine
every item in the input:

tn = 9tn/3 + n, for n ≥ 3, subject to t1 = 1.
Here a = 9, b = 3, f(n) = n and nlogba = nlog39 =Θ(n2).
Since f(n) = O (nlog39-ε ), where ε = 1, we can apply case 1 of the master
theorem and conclude that the solution is tn ∈ Θ(n2).

Example: A recurrence arises from a search algorithm.
tn = t2n/3 + 1, n ≥ 3, subject to t2 = 1.

Here a = 1, b = 3/2, thus nlogba = nlog3/21=Θ(n0) = 1, and f(n) = 1.
Therefore, case 2 applies, since f(n)=Θ(nlogba )=Θ(1), and the solution to
the recurrence is tn= Θ(lgn).
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Example: The recurrence arises from a recursive algorithm.
tn = 3tn/4 + nlgn, n ≥ 4, subject to t1 = 1.

For this recurrence, a = 3, b = 4, and thus nlogba = nlog43 = O(n0.793), f(n) =
nlgn.
Since f(n) = Ω (nlog43+ε), where ε ≈0.2, case 3 applies if we can show that
the regularity condition holds for f(n). For sufficiently large n, af(n/b) =
3(n/4)lg(n/4) ≤ (3/4)nlgn = cf(n) for c = ¾ < 0.
Consequently, by case 3, the solution to the recurrence is, tn∈Θ(nlgn).

Example: The master method does not apply the following recurrence.
tn = 2tn/2 + nlgn. In this a = 2, b = 2, f(n) =nlgn, and nlogba = n.

It seems that case 3 should apply, since f(n) = nlgn is asymptotically
larger than nlogba = n but not polynomially larger. The ratio f(n)/nlogba =
(nlgn)/n = lgn is asymptotically less than nε for any positive constant ε.
Consequently, the recurrence falls into the gap between case 2 and case
3. Therefore, the master method cannot be used to solve this recurrence.
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4 Solving Recurrences Using the Characteristic Equation
• Homogeneous Recurrences: First we introduce homogeneous linear

recurrences with constant coefficients, that is, recurrence of the form
• a0tn + a1tn-1 + … + aktn-k = 0 (1)
• where
i. the ti are the values we are looking for. The recurrence is linear since it

does not contain terms of the form titi+j, ti
2, and so on;

ii. the coefficients ai are constants; and
iii. the recurrence is homogeneous because the linear combination of the ti

is equal to zero.

• Example: Consider the familiar recurrence for the Fibonacci
sequence.

• fn = fn-1 + fn-2 which is fn - fn-1 - fn-2 = 0,
• Therefore, Fibonacci sequence corresponds to a homogeneous linear

recurrence with constants coefficients k = 2, a0 = 1 and a1 = a2 = -1.
• It is interesting to note that any linear combination of solutions is itself

a solution.
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• Trying to solve a few easy examples of recurrences of the form (1) by
intelligent guesswork (or after a while intuition) may suggest we look for a
solution of the form

• tn = xn

• where x is a constant as yet unknown. If we try this solution in (1), we obtain
a0xn+ a1xn-1 +…+ akxn-k = 0

• This equation is satisfied if x = 0, a trivial solution of no interest. Otherwise,
the equation is satisfied if and only if

• a0xk+ a1xk-1 +…+ ak = 0.
• This equation of degree k in x is called the characteristic equation of the

recurrence of (1) and
P(x) = a0xk+ a1xk-1 +…+ ak

• is called its characteristic polynomial.
• Recall that the fundamental theorem of algebra states that any polynomial p(x)

of degree k has exactly k roots (not necessarily distinct), which means that it
can be factorized as a product of k monomials

• P(x) = Π1≤i≤k (x-ri)
• where the ri may be complex numbers. Moreover, these ri are the only

solutions of the equation p(x).
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Suppose that the k roots r1, r2, …, rk of this characteristic equation are all distinct.
Since p(ri) = 0, it follows that x = ri is a solution to the characteristic equation
and therefore ri

n is a solution to the recurrence. Since any linear combination of
solutions is also a solution, we conclude that the following satisfies the
recurrence (1) for any choice of constants c1, c2, …, ck:

tn = ∑ciri
n

• of terms ri
n is a solution of the recurrence (1), where the k constants c1, c2, …, ck

are determined by the initial conditions. We need exactly k initial conditions to
determine the values of these k constants. The remarkable fact, which we do not
prove here, is that (1) has only solutions of this form.

• Example: Consider the recurrence
tn - 3tn-1 - 4tn-2 = 0 n ≥ 2, subject to t0 = 0, t1 = 1.

• The characteristic equation of the recurrence is
x2 - 3x - 4 = 0, whose roots are –1 and 4.

The general solution therefore has the form tn = c1(-1)n +c24n.
• The initial conditions give

c1 +c2 = 0 n = 0,
-c1 + 4c2 = 1 n = 1, that is, c1= -1/5, c2= 1/5

• We finally obtain tn = 1/5 [4n – (-1)n ], that is, tn ∈ Θ(4n).
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Example: (Fibonacci) Consider the recurrence
tn - tn-1 - tn-2 = 0 n ≥ 2, subject to t0 = 0, t1 = 1.

The characteristic polynomial is
P(x)= x2 -x - 1 = 0

Whose roots are (1+√5)/2 and (1-√5)/2.
The general solution is therefore of the form

tn = c1((1+√5)/2)n + c2((1-√5)/2 )n.
The initial conditions give

c1 + c2 = 0 n = 0,
((1+√5)/2)c1 + ((1-√5)/2 )c2 = 1 n = 1,

Solving these equations, we obtain c1= 1/√5, c2= -1/√5.
We finally obtain

tn = 1/√5 [((1+√5)/2) n – ((1-√5)/2) n ],
which is de Moivre’s famous formula for the Fibonacci sequence.

Therefore, tn ∈ Θ((1+√5)/2) n.
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Now suppose that the roots of the characteristic equation are not all distinct. Then
tn =nrn is also a solution of (1). That is,
a0nrn + a1(n-1)rn-1+…+ ak(n-k)rn-k = 0,

More generally, if m is the multiplicity of the root r, then
tn = rn, tn = nrn, tn = n2rn, …, tn = nm-1rn are all possible solutions of (1).

The general solution is a linear combination of these terms and of the terms
contributed by the other roots of the characteristic equation. Once again there are
k constants to be determined by the initial conditions.

Example: Solve the following recurrence:
tn = 5tn-1 - 8tn-2 + 4tn-3 n ≥ 3, subject to t0 = 0, t1 = 1, and t2 = 2.

The characteristic equation is
x3 - 5x2 + 8x - 4 = 0, or (x-1)(x-2)2 = 0.

The roots are 1 and 2 (of multiplicity 2). The general solution is therefore
tn = c11n +c22n +c3n2n. The initial conditions give

c1 +c2 = 0 n = 0,
c1 + 2c2 + 2c3 = 1 n = 1,
c1 + 4c2 + 8c3 = 2 n = 2,

From which we find c1 = -2, c2 = 2, c3 = -1/2. Therefore, tn = 2n +1- n2n-1 – 2 .
tn ∈ Θ(n2n).
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Inhomogeneous Recurrences: We now consider recurrences of a slightly more
general form.
a0tn + a1tn-1 + … + aktn-k = bnp(n) (2)

The left hand side is the same as (1), but on the right hand side we have bnp(n),
where b is a constant; an

p(n) is a polynomial in n of degree d.
Example: Solve the following recurrence: tn - 2tn-1 = 3n.
In this case b =3 and p(n) = 1, a polynomial of degree d=0. A little manipulation

allows us to reduce this example to the form (1). To see this, we first multiply
the recurrence by 3, obtaining
3tn - 6tn-1 = 3n+1.

If we replace n by n+1 in the original recurrence, we get
tn+1 - 2tn = 3n+1.

Finally, subtracting these two equations, we have
tn+1 - 5tn + 6tn-1 = 0,

which can be solved by the above method. The characteristic equation is
x2 - 5x + 6 = 0. That is, (x-2)(x-3) = 0.

Intuitively we can see that the factor (x-2) corresponds to the left-hand side of the
original recurrence, whereas the factor (x-3) has appeared as a result of our
manipulation to get rid of the right-hand side.
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Generalizing this approach, we can show that to solve (2) it is sufficient to take
the following characteristic equation
(a0xk+ a1xk-1 +…+ ak )(x-b)d+1 = 0.

Once this equation is obtained, proceed as in the homogeneous case.
Example: The number of movements of a ring required in the Towers of Hanoi

problem is given by the following recurrence relation:
tn = 2tn-1 + 1, n ≥ 1, subject to t0 = 0.

The recurrence can be written
tn - 2tn-1 = 1, which is of the form (2) with b = 1, p(n) = 1, a polynomial of
degree 0. The characteristic equation is therefore
(x-2)(x-1) = 0.

The roots of this equation are 1 and 2, so the general solution of the recurrence is
tn = c11n +c22n.

We need two initial conditions. We know that t0 = 0; to find a second initial
condition we use the recurrence itself to calculate t1 = 2t0 +1 = 1.

We finally have c1 +c2 = 0 n = 0
c1 + 2c2 = 1 n = 1

From which we obtain the solution, tn = 2n –1, where c1= -1, c2 = 1.
Then we can conclude that tn ∈ Θ(2n).
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A further generalization of the same type of argument allows us finally to solve
recurrences of the form
a0tn + a1tn-1 + … + aktn-k = b1

np1(n) + b2
np2(n)+… (3)

where the bi are distinct constants and pi(n) are polynomials in n respectively of
degree di. It suffices to write the characteristic equation
(a0xk+ a1xk-1 +…+ ak )(x- b1)d1+1(x- b2)d2+1 … = 0,

Example: Solve the following recurrence:
tn = 2tn-1 + n + 2n n ≥ 1, subject to t0 = 0.
tn - 2tn-1 = n + 2n, which is of the form (3) with b1=1, p1(n) = n, b2 =2,
p2(n) = 1. The characteristic equation is (x-2)(x-1)2(x-2) = 0, Roots: 1, 2, 2.

The general solution of the recurrence is therefore of the form
tn = c11n + c2n1n + c32n + c4n2n

Using the recurrence, we can calculate t1= 3 (t1= 0+1+21 = 3), t2 = 12, t3 = 35.
c1 +c3 = 0 n = 0,
c1 + c2 + 2c3 + 2c4 = 3 n = 1
c1 + 2c2 + 4c3 + 8c4 = 12 n = 2
c1 + 3c2 + 8c3 + 24c4 = 35 n = 3, arriving at tn = -2 – n + 2n+1 + n2n

Therefore, tn ∈ Θ(n2n).
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Change of Variable:
• We write T(n) for the term of a general recurrence, and tk for the term

of a new recurrence obtained by a change of variable.

Example: Solve the recurrence if n is a power of 2 and if
T(n) = 4T(n/2) + n n > 1.

Replace n by 2k (so that k = lgn) to obtain T(2k) = 4T(2k-1) + 2k. This can
be written as

tk = 4tk-1 + 2k if tk = T(2k) = T(n).
We know how to solve this new recurrence: the characteristic equation is

(x-4)(x-2) = 0
and hence tk = c14k + c22k.
Putting n back instead of k, we find

T(n) = c1n2 + c2n.
T(n) is therefore in O(n2 | n is a power of 2).
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Example: Solve the recurrence if n is a power of 2 and if
T(n) = 2T(n/2) + nlgn n > 1.

Replace n by 2k (so that k = lgn) to obtain T(2k) = 2T(2k-1) + k2k.
This can be written as tk = 2tk-1 + k2k if tk = T(2k) = T(n).
We know how to solve this new recurrence: the characteristic equation is

(x-2)3 = 0, (since tk - 2tk-1 = k2k, where b = 2, p(k) = k, and d = 1),
and hence tk = c12k + c2k2k + c3k22k. Putting n back instead of k, we find

T(n) = c1n + c2nlgn + c3nlg2n.
Hence T(n) ∈ O(nlg2n | n is a power of 2).
Example: Solve the recurrence if n is a power of 2 and if

T(n) = 3T(n/2) + cn (c is constant, n = 2k > 1.)
Replace n by 2k (so that k = lgn) to obtain T(2k) = 3T(2k-1) + c2k.
This can be written as tk = 3tk-1 + c2k if tk = T(2k) = T(n).
The characteristic equation is (x-3)(x-2) = 0,
(since tk -3tk-1 = c2k, where b = 2, p(k) = c, and d = 0), and hence

tk = c13k + c22k If we put n back, instead of k, we find
T(n) = c13lgn + c2n.

Since algb = blga, therefore, T(n) = c1nlg3 + c2n. Hence, T(n) ∈ O(nlg3).
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