
Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
1

Amortized Analysis of Algorithms

Adnan YAZICI
Dept. of Computer Engineering

Middle East Technical Univ.
Ankara - TURKEY



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
2

Amortized Analysis of Algorithms

• Worst-case analysis is sometimes overly pessimistic.
• Amortized analysis of an algorithm involves computing the

maximum total number of all operations on the various data
structures.

• Amortized cost applies to each operation, even when there are
several types of operations in the sequence.

• In amortized algorithms, time required to perform a sequence
of data structure operations is averaged over all the successive
operations performed. That is, a large cost of one operation is
spread out over many operations (amortized), where the others
are less expensive.

• Therefore, amortized anaysis can be used to show that the
average cost of an operation is small, if one averages over a
sequence of operations, even though one of the single
operations might be very expensive.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
3

Amortized Analysis of Algorithms

• Amortized time analysis provides more accurate
analysis.

• These situations arise fairly often in connection with
dynamic sets and their associated operations.

• Example: Time needed to get a cup of coffee in a
common coffee room. Once in a while, you have to
start a fresh brew when you find the pot empty. It is
quick in amortized sense since a long time is required
only after several cups have been obtained quickly.

Operations: - get a cup of coffee (quick)
- brew a fresh pot (time consuming)



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
4

Amortized Analysis of Algorithms

• Amortized analysis differs from average-case analysis
in that probability is not involved in amortized
analysis.

• Rather than taking the average over all possible
inputs, which requires an assumption on the
probability distribution of instances, in amortized
analysis we take the average over successive calls.

• In amortized analysis the times taken by the various
calls are highly dependent, whereas in average-case
analysis we implicitly assume that each call is
independent from the others.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
5

Amortized Analysis of Algorithms

• Suppose we have an ADT and we want to analyze its
operation using amortized time analysis. Amorized time
analysis is based on the following equation, which applies to
each individual operation of this ADT.

amortized cost = actual cost + accounting cost
• The creative part is to design a system of accounting costs

for individual operations that achives the two goals:
1. In any legal sequence of operations, beginning from the

creation of the ADT object being analyzed, the sum of
the accounting cost is nonnegative.

2. Although the actual cost may fluctuate widely from one
individual operation to the next, it is feasible to analyze
the amortized cost of each operation.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
6

Amortized Analysis of Algorithms
• If these two goals are achived, then the total amortized

cost of a sequence of operations (always starting from
the creation of the ADT object) is an upper bound on
the total actual cost.

• Intuitively, the sum of the accounting costs is like a
savings account.

• The main idea for designing a system of accounting
costs is that “normal” individual operations should
have a positive accounting cost, while the unusually
expensive individual operations receive a negative
accounting cost.

• Working out how big to make the positive charges to
accounting costs often requires creativity, and may
involve a degree of trial and error to arrive at some
amount that is reasonaly small, yet large enough to
prevent the “accounting balance” from going negative.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
7

Amortized Analysis of Algorithms

There exists three common techniques
used in amortized analysis:

• Aggeregate method
• Accounting trick
• The potential function method



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
8

Amortized Analysis of Algorithms

Aggeregate method:
– We show that a sequence of n operations take

worst-case time T(n) in total. In the worst case,
the ave. cost, or amortized cost, per operation is
therefore T(n) / n.

– In the aggregate method, all operations have the
same amortized cost.

– The other two methods, the accounting tricky and
the potential function method, may assign
different amortized costs to diferent types of
operations.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
9

Amortized Analysis of Algorithms
Example: Stack operations:
Push(S,x): pushes object x onto stack S
Pop(S): pops the top of the stack S and returns the

poped object
Multipop(S,k): Removes the k top objects of stack

S
The action of Multipop on a stack S is as follows:
Multipop (S,k)
while not STACK-EMPTY(S) and k ≠ 0

do POP(s)
k � k –1

• The top 4 objects are popped by
Multipop(S,4), whose result is shown in
second column.

-5050

2222

10

14

34

23 top



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
10

Amortized Analysis of Algorithms

• The worst-case cost of a Multipop operation
in the sequence is O(n), hence a sequence of
n operations costs O(n2), (since we may have
O(n) Multipop operations costing O(n) each
and the stack size is at most n.)

• Although this analysis is correct, but not
tight.

• Using the aggregate method of amortized
analysis, we can obtain a tighter upper bound
that considers the entire sequence of n
operations.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
11

Amortized Analysis of Algorithms

• In fact, although a single Multipop operation can be
expensive, any sequence of n Push, Pop, and
Multipop operations on an initially empty stack can
cost at most O(n). Why?

• Because each object can be poped at most once for
each time it is pushed. Therefore, the number of
times that Pop can be called on a nonempty stack,
including calls within Multipop, is at most the
number of Push, which is at most n. For any value
of n, any sequence of n Push, Pop, and Multipop
operations takes a total of O(n) time.

• The amortized cost of an operation is the average:
O(n)/n = O(1).



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
12

Accounting trick
• Different charges to different operations are assigned. Some

operations are charged more or less than they actually cost.
• When an operation’s amortized cost exceeds its actual cost,

the difference is assigned to specific objects in the data
structure as credit.

• Credit can be used later on to help pay for operations whose
amortized cost is less than their actual cost.

• One must choose the amortized costs of operations carefully.
The total credit in the data structure should never become
negative, otherwise the total amortized cost would not be an
upper bound on the total actual cost.

Amortized Analysis of Algorithms



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
13

Amortized Analysis of Algorithms
Example-1: stack operations:

The actual costs of the operations were,
Push 1,
Pop 1,
Multipop min(k,s),

• where k is the argument supplied to Multipop and s is the
stack size when it is called.

We assign the following amortized costs:
Push 2,
Pop 0,
Multipop 0.

• Here all three amortized costs are O(1), although in general
the amortized costs of the operations under consideration
may differ asymptotically.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
14

Amortized Analysis of Algorithms
• We shall now show that we can pay for any sequence of stack

operations by charging the amortized costs.
– For Push operation we pay the actual cost of the push 1 token and are

left with a credit of 1 token out of 2 tokens charged, which we put on
top of the plate.

– When we execute a Pop operation, we charge the operation nothing
and pay its actual cost using the credit stored in the stack. Thus, by
charging the Push operation a little bit more, we needn’t charge the
Pop operation anything.

– We needn’t charge the Multipop operation anything either. We have
always charged at least enough up front to pay for the Multipop
operations.

• Thus, for any sequence of n Push, Pop, and Multipop
operations, the total amortized cost is an upper bound on the
total actual cost. Since the total amortized cost is O(n), so is
the total actual cost.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
15

Amortized Analysis of Algorithms
• Example -2: Accounting scheme for Stack with array

doubling:
– Say the actual cost of push or pop is 1 when no resizing of

the array occurs, and
– The actual cost of push is 1 + nt, for some constant t, if it

involves doubling the array size from n to 2n and copying n
elements over the new array.

– So, the worst-case actual time for push is Θ(n). However,
the amortized analysis gives a more accurate picture.

• The accounting cost for a push that does not require array doubling
is 2t,

• The accounting cost for a push that requires doubling the array from
n to 2n is – nt + 2t,

• Pop is 0.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
16

Amortized Analysis of Algorithms

• The coefficient of 2 in the accounting costs is chosen to be large enough,
from the time the stack is created, the sum of the accounting costs can never
be negative. To see this informally, when the account balance – net sum of
accounting costs - grows to 2nt (doubling occurs from size n to 2n), then the
first negaive charge will reduce it to nt + 2t. Therefore, this is a valid
accounting scheme for the Stack ADT.

• With some experimentation we can convince ourselves that any coefficient
less than 2 will lead to eventual bankruptcy in the worst case.

• Amortized cost = actual cost + accounting cost = 1 + nt + (-nt + 2t) = 1 + 2t.
• With this accounting scheme, the amortized cost of each individual push

operation is 1 + 2t, whether it causes array doubling or not and the
amortized cost of each pop operation is 1. Thus we can say that both push
and pop run in the worst-case amortized time that is in Θ(1).

• More complicated data structures often require more complicated
accounting schemes, which require more creativity to think up.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
17

Amortized Analysis of Algorithms

• The potential function method
– The potential is associated with the data structure as a

whole rather than with specific objects within the data
structure.

– The potential method works as follows:
• We start with an initial data structure D0 on which n

operations are performed.
• For each i = 1,2,...,n, we let ci be the actual cost of the ith

operation and Di be the data structure that results after
applying the ith operation on data structure Di-1.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
18

Amortized Analysis of Algorithms
• A potential function Φ maps each data structure Di to a real

number.
• Φ(Di) is potential associated with data structure Di.
• The amortized cost aci of the ith operation with respect to

potential function Φ is defined by
aci = ci + Φ(Di) - Φ(Di-1).

• The amortized cost of each operation is therefore its actual
cost(ci) plus the increase in potential (Φ(Di) - Φ(Di-1)) caused by
ith operation.

• So, the total amortized cost of the n operations is
∑1≤i≤n aci = ∑1≤i≤n (ci + Φ(Di) - Φ(Di-1))

= ∑1≤i≤n ci + Φ(Dn) - Φ(D0).
• Here we used telescoping series;

for any sequence a0, a1, ..., an, ∑1≤k≤n (ak – ak-1) = (an – a0).



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
19

Amortized Analysis of Algorithms

∑1≤i≤n aci = ∑1≤i≤n ci + Φ(Dn) - Φ(D0).
• If we can define a potential function Φ so that

Φ(Dn) ≥ Φ(D0), then the total amortized cost,
∑1≤i≤n aci, is an upper bound on the total actual cost
needed to perform a sequence of operations.

• It is often convenient to define Φ(D0) to be 0 and
then show that Φ(Di) ≥ 0, ∀i.

• The challenge in applying this technique is to figure
out the proper potential function.

• Different potential functions may yield different
amortized costs yet still be upper bounds on the
actual costs.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
20

Amortized Analysis of Algorithms
Example: Suppose that the process to be analysed modifies a

database and its efficiency each time it is called depends on
the current state of that database. We associate a notion of
“cleanliness”, known as the potential function of the database.

Formally, we introduce the following parameters:
• Φ: an integer-valued potential function of the state of the

database. Larger values of Φ correspond to dirtier states.
• Φ0: the value of Φ on the initial state; it represents our

standard of cleanliness.
• Φi: the value of Φ on the database after the ith call on the

process, and
• ci: the actual time needed by that call.
• aci: the amortized time, which is actual time (required to

carry out the ith call on the process plus the increase in
potential caused by that call.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
21

Amortized Analysis of Algorithms
• So, the amortized time taken by that call is:

aci = ci + Φi - Φi-1

• Let Tn denote the total time required for the first n calls on the process,
and denote the total amortized time by aTn.

aTn = ∑1≤i≤n aci = ∑1≤i≤n (ci + Φi - Φi-1) = ∑1≤i≤n ci + ∑1≤i≤n Φi - ∑1≤i≤n Φi-1

= Tn + Φn + Φn-1 +.. Φ1 - Φn-1 - ...- Φ1 - Φ0

= Tn + Φn - Φ0

Therefore, aTn = Tn + (Φn - Φ0).

• The significance of this is that Tn ≤ aTn holds for all n provided Φn never
becomes smaller than Φ0. In other words, the total amortized time is
always an upper bound on the total cost actual time needed to perform a
sequence of operations, as long as the database is never allowed to
become “cleaner” than it was initially.

• This shows that overcleaning can be harmful!!
• This approach is interesting when the actual time varies significantly from

one call to the next, whereas the amortized time is nearly invarient.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
22

Amortized Analysis of Algorithms

Example: stack operations:
• We define Φ on a stack to be the number of objects

in the stack.
• The stack Di that results after the ith operation has

nonnegative potential, since the number of objects in
the stack is never negative. Thus,
Φ(Di) ≥ 0 = Φ(D0).

• The total amortized cost of n operations w.r.t Φ
therefore represents an upper bound on the actual
cost.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
23

Amortized Analysis of Algorithms
The amortized costs of the various stack operations are as follows:
• If the ith operation on a stack containing s objects is a Push

operation, then the potential difference is
Φ(Di) - Φ(Di-1) = (s+1) – s = 1.

• The amortized cost of this Push operation is
aci = ci + Φ(Di) - Φ(Di-1) = 1 + 1 = 2.

• If ith operation is Pop on the stack containing an object that is
popped off the stack. The actual cost of the Pop operation is
1, and the potential difference is
Φ(Di) - Φ(Di-1) = -1.

Thus, the amortized cost of this Pop operation is
aci = ci + Φ(Di) - Φ(Di-1) = 1 – 1 = 0.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
24

Amortized Analysis of Algorithms

• Therefore, the amortized cost of the each of the three
operations is O(1), and thus the total amortized cost
of a sequence of n operations is O(n).

• Suppose that ith operation on the stack is
Multipop(S,k) and k = min(k,s) objects are popped
off the stack. The actual cost of the operation is k,
and the potential difference is
Φ(Di) - Φ(Di-1) = -k.

• Thus, the amortized cost of this Multipop operation is
aci = ci + Φ(Di) - Φ(Di-1) = k – k = 0.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
25

Amortized Analysis of Algorithms

How large should a hash table be?
• Problem: What if we don’t know the proper size in

advance?
• Goal: Make the table as small as possible, but large

enough so that it won’t overflow (or otherwise
become inefficient).

• IDEA: Whenever the table overflows, “grow” it by
allocating a new, a larger table. Move all items from
the old table into the new one, and free the storage
for the old table.

• Solution: Dynamic tables.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
26

Amortized Analysis of Algorithms
Example:



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
27

Amortized Analysis of Algorithms

Worst-case analysis
• Consider a sequence of n insertions. The

worst-case time to execute one insertion is
Ο(n). Therefore, the worst-case time for n
insertions is n.

Ο(n) = Ο(n2).
• WRONG! In fact, the worst-case cost for n

insertions is only Ο(n) << Ο(n2).
• Let’s see why.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
28

Amortized Analysis of Algorithms
• If we analyze a sequence of n Table-Insert operations

on an initially empty table, what is the actual cost ci
of the ith operation?

i if i-1 is an exact power of 2
ci =

1 otherwise (if there is room in the current table)
• The total cost of n Table-Insert operations is;

therefore,
∑1≤i≤n ci ≤ n + ∑0≤j≤lgn 2j < n + 2n = 3n

• there are at most n operations that cost 1 and the costs
of the remaining operations for a geometric series.
Since the total cost of n operations is 3n, the
amortized cost of a single operation is 3.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
29



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
30



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
31

Amortized Analysis of Algorithms



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
32



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
33



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
34

Amortized Analysis of Algorithms

Example: Dynamic Tables
• Assume that T is an object representing the table.
• The field table[T] contains a pointer to the block of

storage representing the table.
• The field num[T] contains the number of items in the

table
• The field size[T] is the total number of slots in the

table.
• Initially, the table is empty: num[T] = size[T] = 0.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
35

Amortized Analysis of Algorithms

Dynamic Tables
Table insertion: If only insertions are performed, the load factor of

a table is always at least ½, thus the amount of wasted space
never exceeds half the total space in the table.

Table-Insert (T, x)
1. If size [T] = 0
2. Then allocate table[T] with 1 slot
3. If num[T] = size [T]
4. Then allocate new-table with 2*size[T] slots
5. Insert all items in table[T] into new-table
6. Free table[T]
7. table[T] � new-table
8. size[T] � 2*size[T]
9. Insert x into table[T]
10. num[T] � num[T] + 1



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
36

Amortized Analysis of Algorithms
• To use the potential function method to analyze a sequence of

n Table-Insert operations, we start by defining a potential
function Φ that is 0 immediately after an expansion, but builds
to the table size by the time the table is full, so that the next
expansion can be paid for by the potential.

• The potential function Φ(T) = 2*num[T]–size[T] is one
possibility.

– Immediately after the expansion, we have num[T]= size[T]/2, and thus
Φ(T) is 0 (as desired).

– Immediately before the expansion, we have num[T]=size[T], thus
Φ(T)=num[T], thus the potential can pay for an expansion if an item is
inserted (as desired).

– The inial value of the potential is 0, since the table is always at least
half full, num[T] ≥ size[T], which imples that Φ(T) is always
nonnegative. Thus, the sum of the amortized costs of n Table-Insert
operations is an upper bound on the sum of the actual costs (as
desired).



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
37

Amortized Analysis of Algorithms
• If the ith Table-Insert operation does not trigger an expansion,

then sizei =sizei-1 and the amortized cost of the operation is
aci = ci + Φi - Φi-1

= 1 + (2*numi – sizei) – (2*numi-1 – sizei-1)
= 1 + (2*numi – sizei) – (2*(numi – 1) - sizei)
= 3.

• If the ith Table-Insert operation does trigger an expansion,
then sizei / 2 = sizei-1 = numi –1 and the amortized cost of the
operation is

aci = ci + Φi - Φi-1

= numi + (2*numi – sizei) – (2*numi-1 – sizei-1)
= numi + (2*numi–(2*numi–2)) – (2*(numi – 1)–(numi–1))
= numi + 2 - (numi–1)
= 3.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
38

Amortized Analysis of Algorithms
Table expansion and contraction:
• The improvement on the natural strategy for expansion and

contraction (doubling the table size for both cases which may
result an immediate expansion and contraction on the table
size whose n sequence of them would be Θ(n2), where
amortized cost of an operation would be Θ(n)) is to allow the
load factor of the table to drop below ½.

• The load factor, denoted as α(T), is the no. of items stored in
the table divided by the size (no. of slots) of the table; that is,
α(T) = num[T] / size[T].

• Specifically, we continue to double the table size when an
item is inserted into a full table, but halve the table size when
a deletion causes the table to become less than ¼ full rather
than ½ full as before.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
39

Amortized Analysis of Algorithms

• We can now use the potential method to analyze the
cost of a sequence of n Table-Insert and n Table-delete
operations.

• We start by defining a potential function Φ that is 0
immediately after an expansion or contraction and
builds as the load factor increases to 1 or decreases to
¼.

• We use the potential function as
2*num[T] – size[T] if α(T) ≥ ½,

• Φ(T) =
size[T]/2 - num[T] if α(T) < ½.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
40

Amortized Analysis of Algorithms
2*num[T] – size[T] if α(T) ≥ ½,

Φ(T) =
size[T]/2 - num[T] if α(T) < ½.

• Observe that when the load factor is ½, the potential is 0
(since we have num[T]= size[T]/2, and thus Φ(T) is 0 (as
desired)).

• When α(T) is 1, we have num[T]= size[T], which implies
Φ(T) = num[T], thus the potential can pay for an expansion if
an item is inserted (as desired).

• When the load factor is 1/4, we have size[T] = 4*num[T],
which implies Φ(T) = num[T], thus the potential can pay for
an contraction if an item is deleted (as desired).

• Observe that the potential of an empty table is 0 and the
potential is never negative. Thus, the total amortized cost of a
sequence of operations w.r.t Φ is an upper bound on their
actual cost (as desired).



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
41

Amortized Analysis of Algorithms

sizei

numi

ΦΦΦΦi

0 8 16 24 32 40 48

i

32

24

16

8

0

The figure below illustrates how the potential behaves for a
sequence of operations.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
42

Amortized Analysis of Algorithms
• Initially, num0 = 0, size0= 0, α0 = 1, and Φ0 = 0.
• We start with the case in which the ith operation is
Table-Insert.
• If αi-1 ≥ ½, the analysis is identical to that for table
expansion before, whether the table expands or not, the
amortized cost, aci, of the Table-insert operation is at
most 3.
• If αi-1 < ½, the table cannot expand as a result of the
operation, since expansion occurs only when αi-1=1. If αi
< ½ as well, then the amortized cost of the ith operation is

aci = ci + Φi - Φi-1
= 1 + (sizei /2- numi) – (sizei-1 /2- numi-1)
= 1 + (sizei /2- numi) – (sizei /2- (numi-1)) = 0.
Since sizei = sizei-1 and numi-1 = numi-1.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
43

Amortized Analysis of Algorithms

•If αi-1 < ½ but αi ≥ ½, then
aci = ci + Φi - Φi-1
=1 + (2*numi – sizei) – (sizei-1 /2 - numi-1)
=1 + (2*(numi-1 +1) – sizei-1) – (sizei-1 /2 - numi-1)
=3*numi-1 – 3/2sizei-1 +3
=3*αi-1*sizei-1 – 3/2sizei-1 +3
< 3/2*sizei-1 – 3/2sizei-1 +3 = 3.

Since sizei = sizei-1, numi-1 + 1 = numi, and αi-1= numi-1/sizei-1 .

•Thus, the amortized cost of a Table-insert operation is
at most 3.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
44

Amortized Analysis of Algorithms

We now turn to the case in which the ith operation is
Table-delete.

• In this case, numi = numi –1. If αi-1 < ½, then we must
consider whether the Table-delete operation causes a
contraction.

• If it does not, then sizei = sizei-1 and the amortized cost
of the operation is

aci = ci + Φi - Φi-1
= 1 + (sizei /2 - numi) – (sizei-1 /2 - numi-1)
= 1 + (sizei /2 - numi) – (sizei /2 - numi + 1).
= 2.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
45

Amortized Analysis of Algorithms

• If αi-1 < ½ and the ith operation does trigger a
contraction, then the actual cost of the operation is ci =
numi + 1, since we delete one item and move numi items.
• We have sizei /2 = sizei-1/4 = numi + 1, and the
amortized cost of the operation is

aci = ci + Φi - Φi-1
= (numi + 1) + (sizei /2 - numi) – (sizei-1/2 - numi-1)
= (numi + 1) + ((numi + 1) - numi) –

((2*numi + 2) - (numi + 1))
= 1.



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
46

Amortized Analysis of Algorithms

• When the ith operation is a Table-delete and αi-1 ≥ ½,
the amortized cost is also bounded above by a constant.

In summary, since the amortized cost of each operation
is bounded above by a constant, the actual time for any
sequence of n operations on a dynamic table is O(n).



Amortized Anaysis of Algorihms, A.Yazici, Spring 2006 CEng 567
47

Conclusions
• Amortized costs can provide a clean abstraction
of data-structure performance.
• Any of the analysis methods can be used when
an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest.
• Different schemes may work for assigning
amortized costs in the accounting method, or
potentials in the potential method, sometimes
yielding radically different bounds.


	Amortized Analysis of Algorithms...
	Amortized Analysis of Algorithms
	Worst-case analysis is sometimes...
	Amortized analysis of an algorit...
	Amortized cost applies to each o...
	In amortized algorithms, time re...
	Therefore, amortized anaysis can...

	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized analysis differs from ...
	Rather than taking the average o...
	In amortized analysis the times ...

	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	If these two goals are achived, ...
	Intuitively, the sum of the acco...
	The main idea for designing a sy...
	Working out how big to make the ...

	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	The worst-case cost of a Multipo...
	Although this analysis is correc...
	Using the aggregate method of am...

	Amortized Analysis of Algorithms
	In fact, although a single Multi...
	Because each object can be poped...
	The amortized cost of an operati...

	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	We shall now show that we can pa...
	For Push operation we pay the ac...
	When we execute a Pop operation,...
	We needn’t charge the Multipop o...
	Thus, for any sequence of n Push...

	Amortized Analysis of Algorithms
	Example -2: Accounting scheme fo...
	Say the actual cost of push or p...
	The actual cost of push is 1 + n...
	So, the worst-case actual time f...
	The accounting cost for a push t...
	The accounting cost for a push t...
	Pop	is 0.

	Amortized Analysis of Algorithms
	The coefficient of 2 in the acco...
	With some experimentation we can...
	Amortized cost = actual cost + a...
	With this accounting scheme, the...
	More complicated data structures...

	Amortized Analysis of Algorithms
	The potential function method
	The potential is associated with...
	The potential method works as fo...
	We start with an initial data st...
	For each i = 1,2,...,n, we let c...
	Amortized Analysis of Algorithms

	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Slide 29
	Slide 30
	Amortized Analysis of Algorithms
	Slide 32
	Slide 33
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	To use the potential function me...
	The potential function (T) = 2*...
	Immediately after the expansion,...
	Immediately before the expansion...
	The inial value of the potential...

	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Amortized Analysis of Algorithms
	Conclusions

