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Backtracking Design Technique

- Backtracking design technique is applicable to problems
whose solutions can be expressed as sequences of
decisions.

* It 1s based on a search of an associated state space tree
modeling all possible sequences of decisions.

 In its basic form, backtracking resembles a depth-first
search 1n a directed graph.

» Backtrack strategy finds all solutions to a given problem
by searching for all goal states in a state space tree
associated with the problem.

 When a node 1s accessed during a backtracking search,
it becomes the current node being expanded (e-node), but
immediately 1ts first child not yet visited becomes the
new e-node. ,
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Backtracking Design Technique

- Backtracking 1s a recursive method of building up
feasible solutions one at a time.

* In an unmodified form, backtracking is exhaustive: all
possible feasible solutions are considered.

* Methods 1nvolving pruning often reduce the total
number of feasible solutions generated, which makes the
resulting algorithm much more efficient.

» Backtracking approach also 1nvokes a bounding
function to prune more problem states.
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Backtracking Design Technique

- We assume for decision-making process that the decision
X, at stage k must be drawn from a finite set S, of choices.
* For each k >1, the choices available for decision x, may
be limited by choices that have already been made for
X1,----Xg_1- In other words, decision x, may be restricted to
a strict subset of S,.

 For a given problem 1nstance, suppose n is the maximum
number of decision stages that can occur. For k <n, we let
P, denote the set of all possible sequences of k decisions,
represented by k-tuples (x,, X,,..., X}).

*Elements of P, are called problem states, and problem
states that correspond to solutions to the problem are
called goal states.

Backtracking-B&B Design Technique, A.Yazici, Spring 2006 CEng 567

4



Backtracking Design Technique

* Given a problem state (x;,X,,....X )€P,, we let
D, (X;,X,,...,X,.;) denote the decision set consisting of the
set of all possible choices for decision x,.
* More precisely, for (X,X,,...,X.1)€P_1,

DX X0 X ) = § X € Sy | (XpXgne-X,) € Py
* Letting & denote the null tuple (), note that D,(&) is the
set of choices for x,; that is, D,(&) = S,.
* The decision sets D, (x,,X,,...,X;_1), kK =1,....,n, determine
a decision tree T of depth n, called the state space tree.
* The nodes of T at level k, 0 < k < n, are the problems
states (X,X,,...,X;)€P, (P, consists of a null tuple).
*For 0 < k < n, the children of (x;,x,,...,x,_;) are the

problem states {(X;,X5,...,X;_1) | Xi € Di(X{,X5,..,X )}
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Backtracking Design Technique
The General Backtracking Paradigm:

Procedure BacktrackRec(k)
Input. -k (a nonnegative integer, 0 on the 1nitial call)
- implicit state space tree T associated with the given
problem and decision set D,, where D, = & for k >n.
- We assume that an implicit ordering exists for the elements of
D (X{s -ee5 X )
- Explicit global array X[1:n] maintaining problem states of T,
where X[1],...,X[k] are assumed already defined
- bounding function Bound
Output: all goals that are descendants of (X[1],...,X[k])
k=k+I
For each x, € D, (X[1],...,X[k-1]) do
X[k] = x,
If (X[1],...,X[k]) 1s a goal state thenPrint (X[1],...,X[k])
[If not.Bounded(X[1],...,X[k]) then Call backtrackRec(k),

Backtracking-B&B Design Technique, A.Yazici, Spring 2006 CEng 567



Backtracking Design Technique

Example: 0-1 knapsack problem.

 The total number of n-tuples 1s 2%, but not all of these are
feasible.

A naive backtracking algorithm 1s shown below, which
performs no pruning: all 2" possibilities are generated.

e Since 1t takes ®(n) time to check an n-tuple for
feasibility, the entire algorithm 1s ©( n.2%).

 The procedure would be invoked by:
optprofit = 0;
knap (1,&optprofit, optx, w,p,n,kcap);
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Backtracking Design Technique

void function knap (int lev, int *optprofit, int optx [LEN], int
w[LEN], int p[LEN], int n, int knap)

d
if lev == (n+1) then
if 2 w.x. < knap then // check feasibility
if 2 px. > *optprofit then  // compare profit to opt
d

*optprofit = 2_px;
optx=x //whole array assignment, x 1s a global variable

h
else // lev < n; try both choices for x,,,
{ Xlev — 1’
knap(lev+1, &optprofit, optx, w, p, n, knap);
Xlev — 0;

knap(lev+1, &optprofit, optx, w, p, n, knap); } }
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Backtracking Design Technique

e The recursive calls generated by this procedure (knap) can be
represented by a binary tree, called the state space tree of the

problem 1nstance.

« When n=3, the tree 1s as follows, where at each node we record
the current value of x ( ‘-° indicates an unspecified coordinate).

/ - \

(la'a')

SN

(1,1,-) (1,0,-) 0,1,-) (0,0,-)

SN SN SN SN

(1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (0,0,0)

05'5'
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Backtracking Design Technique

- The revised algorithm for the knapsack problem given
below uses pruning whenever > w.x. > knap (or M).

* In this new algorithm, the parameter curwt records the
weight 2, _..,...; WX: of the partial solution (X;,X,,...,X;...

R
*The procedure would be invoked by:

optprofit = 0;
knap 1 (1,0,&optprofit, optx, w,p,n,kcap);

10
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Backtracking Design Technique

void function knap 1 (int lev, int curwt, int *optprofit, int optx
[LEN], int w[LEN], int p[LEN], int n, int knap)
d

else //lev <n; before setting xlev = 1, check feasibility)

d

if (curwt + wy,) < knap the

d
Xlev - 1;
knap 1(lev+1, curwt+wlev, &optprofit, optx, w, p, n, knap);

)

xlev =0; // no check 1s needed here
knap_l (lev+1, curwt, &optprofit, optx, w, p, n, knap);

i)
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Backtracking Design Technique

Bounding functions:

« Can we do a better pruning job than just checking for feasibility of
subsolutions? The answer is yes, in many cases.

A more sophisticated pruning technique involves the use of a bounding
function. A bounding function generates an upper limit (in the case of
maximization) of the profit that a partial solution can possibly generate.

A bounding function is any function B defined on the set of nodes of the
state space tree that satisfies the following properties:

1) If X is a feasible solution (lev=n) then B(X) = C(X) = the profit incurred by X

2) For any feasible partial solution X, B(X) > C(X).

Therefore, B(X) provides an upper bound on the profit of any feasible
solution that is a descendant of X.

« We can use a bounding function B(X) to prune the state space tree as
follows:

Suppose, at some stage of the backtrack, that B(X)<OptP. Then, we can
ignore all descendants of X since none of them can yield a profit higher than
OptP.

«  Effective bounding functions must have the following properties:
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Backtracking Design Technique

By continuing the 0-1 knapsack problem example, let us now
apply a bounding function to the problem.

An obvious bounding function 1s to assign to node X the profit
produced by the rational knapsack problem for the remaining
capacity and the remaining objects.

That 1s, given a feasible partial solution X=(X,,X,,...,X|eys=s 5
); 0<lev<n, define B(X) as;

B(X) = 2 <iciey PiX; T+ ratknap(lev, keap - 2, e, Wi;)

= Y <iqe PiX; + ratknap(lev, kcap - curwt)

Thus, B 1s the actual profit obtainable from objects 1,2,...,lev
plus the optimal profit from the remaining objects and
remaining capacity, but allowing rational x’s.

With this as a precondition, the following algorithm applies the
bounding function.

13
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Backtracking Design Technique

void function knap 2 (int lev, int curwt, int *optprofit, int optx [LEN], int
w[LEN], int p[LEN], int n, int knap)
{
else //lev < n; before setting x,., = 1, check feasibility)
d
b(X) = 2| ciqey PiX; T ratknap(lev, kcap - curwt)
if b(x) > optprofit then // if B < optprofit, do nothing
d

if (curwt + wy, ) < knap then
{
Xlev - 1’
knap 2(lev+1, curwt + w,, , &optprofit, optx, w, p, n, knap);
)
if b(x) > optprofit then // note that optprofit might have
increased since it was last tested
{
Xiey = 0; // no check is needed here
knap 1(lev+1, curwt, &optprofit, optx, w, p, n, knap);

14
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Backtracking Design Technique

Example: Suppose we three objects (n=3) and w = {5, 10,
1}, p=1{20, 30, 2}, and kcap=10.

B= b(x) = 35; ratknap() = (1,1/2,0) = 35

( Curwt=0
/ \ w=5,10,1
p =20,30,2
B =35 —
Iw=4,3,2
() | curwt=5 B =30 0 PSS
Pruned curwt=10
since it’s \Q
infeasible Pruned
B =22 B =30 because of
curwt =15 05 0.1,) | curwt=10 b(x) = B.
N A
E(X) TZ—Z& / Noned Promed \ C(X) =3_0,
urwt = 100 since infeasible 0.1.0) Curwt=10
optprofit = 22 i) b(x) =B >0 optprofit =30
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Backtracking Design Technique

Backtracking for TSP

* Assume that the problem is to find the minimum cost
Hamiltonian circuit starting and ending at vertex 1.

* We can represent a Hamiltonian circuit as a
permutation of the integers {2,....n}, where n 1s the
number of vertices in the graph, which 1s an (n-1)-tuple.

* Let’s denote an (n-1)-tuple by X = (x;,...,X,.;), where
we require that {x,,....x, ;} = {2, ..., n}.

* Then the following algorithm 1s a basic backtracking
method for the TSP.

16
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Backtracking Design Technique

Backtracking for TSP
Procedure TSP ( lev: integer; var optcost: integer; var optx :
arraytype; n:integer)

Begin
If lev ==n then { /* we have a Hamiltonian circuit */
C = Cost of X;
If C < optcost then {
Optcost = C;
Optx = X;
iy
else
for x,,, =2 ton do
if x,,, 1s distinct from x, ,..., X.,.; then
TSP(lev+1, optcost, optx, n)
end;

17
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Backtracking Design Technique

This algorithm generates the entire state space tree for the problem
Instance.

To speed it up, we need a bounding function B(X) < C(X) (note: we use <
since TSP 1s a minimization problem, > was used for maximization).

There is no bounding function for TSP that is so obvious as RKP is for
BKP.

A bounding function can be developed by defining a cost matrix for the
problem instance as a modified adjacency matrix and then applying the
mathematical operation of matrix reduction.

We now explain the process and an intuitive reason for why it works.

First let’s consider the operation of reduction. A matrix M is said to be
reduced if the following properties hold:

1. all entries in M are non-negative
2. every row and column of M contains at least one zero element

M is the cost matrix for a TSP instance defined as follows:

1. M(1)) = cost of edge 1
2. M(j)=oo ifthere is no edge orif 1=

Then the sum of the reduction, called V(M), represents a lower bound on

sthe-mapimunrcost-Hariitonyan circuit of thereriginal problem. a



Backtracking Design Technique

Example TSP:
3

1 2
(s
S 5 7 2 M = 3 ©
5 2
Q 7

4 ) 3
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Backtracking Design Technique

The reduction is accomplished by the following steps:
subtract 3 (min of the row) from the first row
subtract 2 from the second row
subtract 2 from the third row
subtract 6 from the fourth row
subtract 1 (min of the first column) from the first column
subtract O from the second column
subtract O from the third column
subtract 4 from the fourth column
Therefore, V(M) = 18.
For this simple graph, there are only three possible Hamiltonian circuits: the
costs are as follows:
1234:cost=3+2+6+8=19
1243:cost=3+7+6+5=21
1324:cost=5+2+7+8=22
Note that V(M) = 18 is less than any of these. It can be proved that in general,
V(M) < minimum cost Hamiltonian circuit.

20
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Backtracking Design Technique

For a bounding function, we really want a function that
can be computed for partial solutions and that yields a
lower bound on the minimum cost of completing the
partial solution.

Suppose we have a partial solution
X = (X[Xg5- - s X[oys 5--+o-); 0 <lev <n-1

which presents a path
1 X; X, ... X,; all X’s distinct

« A completion of X to a Hamiltonian circuit is a path
from x,,, to node 1 having intermediate vertices in the set
{2..0} — {X{5X0se - s X|oy } -

Define an (n-lev) x (n-lev) matrix M’, which 1s derived from

M as follows:

copy M to M’
if lev <n-1 then M’[x,,,,1] = o
delete rows 1, X, X,,...,Xjo,.; from M’
delete columns x,, X,,...,X,, from M’
 Usin we can define a Jbounding function for Xias

Backtracking-B&B Design Technique, A. Yazm%prmg 2606
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Backtracking Design Technique

Procedure TSP ( lev: integer; var optcost: integer; var optx : arraytype;
n:integer)
begin
If lev = n then begin /* we have a Hamiltonian circuit */
C = Cost of X;
If C < optcost then begin
Optcost = C;
Optx = Xx;
end; end
else begin
Compute B = B(X)
Xlev — 2’
while (B < optcost) and (x,,, < n) do begin
if x,, 1s distinct from x, ..., X,.,.; then
TSP(lev+1, optcost, optx,n)
Xlev — Xiey +1
end; end {else}
end;
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Backtracking Design Technique

An Example for TSP:

5 o 8 3 6 7
8 00 5 7 4
3~ 9 M=

; 4 3 5 o 9 8
6 7 9 o 6

7 6 ! 4 8 6 oo

-
5 6 4

B(X) = VIM'(X)) + M[1x;] + M[X,X,] + ... + M[Xo,.1,X}ey]

23
Backtracking-B&B Design Technique, A.Yazici, Spring 2006 CEng 567



Backtracking Design Technique

B = Matred() =28
curpath = M[1,2]

B=b(x) = Matreduc() = 20

('a'a'a')

(25_5_5_)
B =33 \ B =29
™~ Bm
(2’3’-’-) (2545_5_) (2’5’-’-)
B =35 B =33 B =32 B=30
(273:47') (2’395’_) (234935') (274:57') (2;5;3,') (255549')
i B =39 X \ B=35 )(
i 2,453 .
(2,3,4,5) (2,3,5,4) Pruned since ( ) Pruned since (2,4,5,3)
B(X) > C(X) B(X) > C(X)
C(X) =35, C(X) =33, C(X) =32, C(X) =30,
Curwt = 123451 Curwt = 123541 Curwt = 124531 Curwt = 125431
optcost = 35 optcost =33 optcost = 32 optcost =30
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Backtracking Design Technique

VM’ (X)) =4 + 3+ 6+ 6+ 1=20 >

w5 7 4 BX)=VIMX))+M[I(Xp,,), 2(X,)]
=20+ 8 =28

Xlev =3

V(M’(X)) = 8+ 6+ 6 =20 >
B(X) = V(M’(X)) + M[1, 2 (x,)] +
M[2(x,...,), 3(x,.)] = 20+8+5 =33

o 9 8§
6 o 6
7 6 o

Backtracking-B&B Design Technique, A.Yazici, Spring 2006
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(9]
<
~

Xlev-l XleV

1 o 8 7
Xjev-1 8 4
3 5 & 98
6 71 9 o 6
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Backtracking Design Technique

Xjev
1 /co $—3—6—7 \
Xjey = 4 VM’(X)) = 6+7 = 13 > B(X) = V(M’(X)) 8 o 5 7 4
© 6 + M1, 2(x)] + MI2(x,), 3(x))] + 3 5 o 48
7 o M[3(X,,.,)> 4(X,,)] = 13+8+5+9 =35 Yl T 6 1 4 o 6
7 4 § q o
o _/

Xlev
_ 1 C 2 L Lo | \
X — 5 _ _ _ . Lo J J T
ev VIM’(X)) =6+6 =12 = B(X) = 8 oo 5§ 7 4
6 o VOVW(X)) +MIL 2(x)] + M[2(x,), 3(xy)] 3 4 o 98
© 6 + M[3(X,,)s 5(X,,)] = 12+8+5+8 =33 Xjev g 6 - d
ev- o0
7 4 6

C(X)= Optcost = M[1, 2] + M[2, 3] + M[3, 5] + M[5, 4] M[4, 1] = 8+5+8+6+6 = 33

26
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Backtracking Design Technique

Xlev
b D
V(M’(X)) = 3+6+7+1= 17> Xy 5 T 4
3 © 8 BX)=V(M(X)+MIL,2(x,)]+ 3 5 o 08
o 9 6 M[2(x,,,.,), 4(x,,,)] =17+8+7 =32 6 7 9 o 6
7 8 o 7 4 8 ¥ o
Xjey = 3 V(M(X)) = 8+7 =15 > B(X) =
© 8 VM’ (X)) + ML, 2(x,)] + MI2(X,), 4(39)] + M[4(%,.,.1), 3(X,.,)]
7 = 15+8+7+9 = 39

C(X)= Optcost = M[1, 2] + M[2, 4] + M[4, 3] + M[3, 5] + M]3, 1] = 8+7+9+8+7 = 39
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Backtracking Design Technique

Xjey =3 V(M’(X)) =3+8=11 > B(X) =
3 » VM’ (X)) + M1, 2(x,)] + M[2(x,), 4(x3)] + M[4(X,,.1)> S(X,)]
o 8 =11+8+7+6 =32

C(X)= Optcost=M[1, 2] + M[2, 4] + M[4, 5] + M[5, 3] + M[3, 1] = 8+7+6+8+3 = 32

Xlev
Xiey =3 1 (o § 3 6
V(M’(X)) = 3+6+6+2=17 > . -
. B(X) = V(M’(X)) + M[1, 2 (x,)] + I I A
6 9 o MI2(x,,..), 5(x,)] =17+8+4=29 P
o 8 6 6 7T 9 o
7 4 8 6
\_ %

28
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Backtracking Design Technique

Xjey =3 VM (X)) = 9+6 = 15 >
© 9 B(X) = VOV (X))+MI1, 2(x)[+M[2(x,),5(5,)+MI5(x,.._,),3(x,.)]
6 oo = 15+8+4+8 =35
Xiey =4 VM (X)) =349 =12 >
3 B(X) = VM (X))+M[L,2(x )| *+M[2(x,),5(x)+MI5(x,,. ), 4(x,..)] = 12+8+4+6 = 30
o 9
Xlev 3 Xlev
8 o 7 4 V(M(X)) = 4+5+6+4+2 = 21 > 1 — 8 36— O
o 5 9 8  BOO=VOLX)+MIE,,)3x)] 8§ o 5|7 4
6 7 o 6 =21+3=24 3 5 o 9 8
7 4 6 o© 6 7 9 o 6
7 4 8 6

29
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Backtracking Design Technique

. K - Kiev J 6 7\
Xjey = 2 VM’ (X)) =4+6+6 =16 > 8§ ® 25 7 4
o 7 4 B(X) = V(M’(X)) + M[1, 3(x,)] + Xjev-1 3 5 ;o 9 8
6 o0 8 M[3(xlev-1)’ 2’(Xlev)] = 16+3+5 =24 " 6 7 9 © 6
7 6 \7 H# B 6 x/
Xjey = 4 VW(X)) = 6+7=13 >
(e 0] 6 B(X) = V(M,(X))+M[1’3(xl)]+M[3(X2)’2(X3)]+M[2(Xlev-l)’4(xlev)]
7 o =13+3+5+7 =28

C(X)= Optcost = M[1, 3] + M[3, 2] + M[2, 4] + M[4, 5] + M[5, 1] = 3+5+7+6+7 = 28.

Xjey =3 VM’ (X)) = 6+6 =12 > B(X) =
6 o VIM’(X)) + M[1, 3(x))] + M[3(x,), 2(x5)] + M[2(x,,,.;)s 5(X,,)]
o 6 =12+3+5+4 =24

C(X)=Optcost=M]1, 3] + M[3, 2] + M[2, 5] + M[5, 4] + M[4, 1] = 3+5+4+6+6 =24
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Backtracking Design Technique

on the minimum cost Hamiltonian circuit of the original problem.

Xlev 4

8 o 4 VIV’ (X)) = 4+6+4+3 =17 >

o 7 6 B(X) = V(M’(X)) + M[1, 3(x,)] +
7 4 o M3(,,.,) 4(X,.,)] = 17+3+9 =29
Xlev 5

8 w 7 VM’(X)) = 7+6+4 =17 >

6 7 ® B(X) = V(M’(X)) + M[1, 3(x,)] +
o 4 7 M[3(X,,..) 5(x,.,)] = 17+3+8 =28

Backtracking-B&B Design Technique, A.Yazici, Spring 2006
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1 / Q Q rd ~ \
00— O J 7
8 o 5 7 4
Xjevt 3—5 9—8
6 7 9 o« 6
7 4 8 ©
o % _/
Xlev
1 / Q e ] £
00— O I U 7
8 o 5 7 4
Xjevt 3—5 9—8
6 7 9 o 0
7 4 8§ 6 o
\_ _/
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Backtracking Design Technique

Xlev =4
8 w 5 4 V(M (X)) = 4+3+6+4+1 =18 >
3 5 o 8 B(X) = V(M’(X)) + M[1(X,,.,), 4(X,,)]
o 7 9 6 =18+ 6 =24
7 4 8 o
Xlev =5
8 w 5 7 V(M’(X)) = 5+3+6+4+2 =20 >
35 o 9 B(X) = VM’ (X)) + M[1(X,,, ) S5(x,.,)]
6 7 9 =20+7=27
o 4 8 6

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

8
3
6
7

& 9w 8
e 8 »n

Xlev

Xlev

CEng 567

\lc\uoog\

A 9w 8 o

o 8 n W

a8 oI

eI N

-/

32



Backtracking Design Technique

B= b(x) = Matreduc() = 20

Same as
above

/B=24

(3929'9'

/B=28 \ B=24

(3a2a4a')

(3,2,4,5)

C(X) =28
Curwt = 132451
optcost =28

(-,-,-,- \
CA \ (44~~~ (5555
\\ B=29 ~ B= 28 A5\/
(3,4,-,- (3.5, Pruned since Pruned since
9 F9™y 9097y B(X)ZC(X) B(X)ZC(X)
Pruned since
(3a2a5a') B(X) > C(X)
(3,2,5,4)
C(X) =24
Curwt = 132541
optcost =24
CEng 567
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Branch and Bound Design Technique

Input: -function D (x,, ..., X,_;) determining state space tree T
associated with the given problem and decision set D,,

- bounding function Bounded

Output: all goals to the given problem

LiveNodes is initialized to be empty

Call AllocateTreeNodes(Root)

Root = parent := nil

Call Add(LiveNodes, Root) // add root to list of
live nodes
While LiveNodes is not empty do

Call Select(liveNodes,E-node,k) // select E-node from
live nodes

For each X[k] € D, (E-node) do // for each child of

the E-node do

Call AllocateTreeNode(child)

Child = info = X[k]

Child - parent := E-node

If answer (child) then // 1f child 1s a goal
node then

Call Path (child) // output path from
child to root 14
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Branch and Bound Design Technique

» Immediately upon expanding the current E-node, this E-node becomes
a dead node and a new E-node is selected from LiveNodes.

* Thus B&B is quite different from backtracking, where we might
backtrack to a given node many times, making it the E-node each time
all its children have finally been generated or algorithm terminates.

* The nodes of the state space tree at any given point in a B&B
algorithm are therefore in one of the following four states: E-node, live
node, dead node, or yet generated.

» As with backtracking, the efficiency of B&B depends on the utilization
of good bounding functions. Such functions are used in the attempt to
determine solutions by restricting attention to small portions of the
entire state space tree.

* When expanding a given E-node, a child can be bounded if it can be
shown that it cannot lead to a goal node.

* We illustrate B&B by revisiting Travel Salesman Problem (7SP),
where the data structure LiveNodes is a queue. Such a B&B, called FIFO
B&B, involves performing a breadth-first search of the state space tree.
Initially the queue of live nodes is empty.

» The algorithm begins by generating the root node of the state space
tree and enqueueing it in the queue LiveNodes. At each stage of the

algorithm a node is dequeued from LiveNodes to become the ngw E-
Backiracking-B&B Desien et At CHiiifen of the E-nodédte then generated.
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Branch and Bound Design Technique

Procedure TSP ( lev: integer; var optcost: integer; var optx : arraytype; n:integer)
Var B,C,Count: integer; NextCoord: array [1..n] of 2..n; NextB: array [1..n] of integer

begin
If lev =n then begin /* we have a Hamiltonian circuit */
C = Cost of X;
If C < optcost then begin
Optcost = C; Optx = x;
end; end
else begin
Count =0;
For x;., =2 ton do
If X,.,.; 1s distinct from X, X,, ..., X.,.; then Begin
Count = Count + 1; NextCoord[Count] = X, ;
NextB[Count] = B(x); /* you compute */

End; /* NextCoord and nextB are n-lev arrays */
Sort NextCoord and NextB ascending order
Count=1;
while (Count < n-lev) and (NextB[Count] < optcost) do begin
if xlev 1s distinct from x, ,..., X;,_; then
X1y = NextCoord [Count]
TSP(lev+1, optcost, optx,n)
Count = count + 1

end; end {else}; end; 36
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Branch and Bound Design Technique

Procedure TSP
B=b(x) = Matreduc() = 20
(-,-,-’- \
B =128 \/B=2NB=24 ————__B=27
(Za'a'a' (3,-,-,- (4,_,_,_ (5,_,_,_
\ N\
Pruned since X \ B 20 B )g\/
B(X) = C(X B=24 = ~ B=
(=63 3,2,-,- 3.4,-,- (3,5,-,- Pruned since  Pruned since
B(X)>C(X) B(X)>C(X)
B =28 \ B =24 > —~—
Pruned since
(3a294a') (3,2,5,-) B(X) > C(X)
Pruned since (3.2.5.4)
B(X) > C(X)
C(X) =24
Curwt = 132541
optcost = 24

Figure: The State Space Tree for the Branch and Bound Approach

37
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Branch and Bound Design Technique

XICV = 2 Xlev = 3 Xle = 4 XICV = 5
o 5 7 4 8 o 7 4 8 » 5 4 8 o 5 7
3 o 9 8 35 9 8 3 5 o 8 3 5 o 9
6 9 o 6 6 7 o 6 6 7 9 6 6 7 9 o
7 8 6 o 7 4 6 © 7 4 8 o 7 4 8 6

V(M’(X)) = 4+3+6+6+1 = 20 > B(X) = VIM’(X)) + M[1(xlev-1), 2(xlev)]= 20 + 8 = 28
V(M(X)) = 4+5+6+4+2 = 21 = B(X) = VIM’(X)) + M[1(xlev-1), 3(xlev)] = 21 + 3 = 24
V(M’(X)) = 4+3+6+4+1 = 18 > B(X) = VIM’(X)) + M[1(xlev-1), 4(xlev)] = 18 +3 = 24
V(M(X)) = 7+5+3+6+4+2 = 20 > B(X) = VM’ (X))+M[1(xlev-1),5(xlev)] = 20+7 = 27

38
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Branch and Bound Design Technique

2
Hlev V(M’(X)) = 4+6+6 = 16 >
o 7 4 B(X) = V(M’(X)) + ML, 3(x,)] +
6 ® 6 M[3(X,ey.1)» 2(X,,,)] = 16+3+5 = 24
7 6 o
Xiev 4
8 o 4 V(M’(X)) = 4+6+4+3 =17 >
o 7 6 B(X) = V(M’(X)) + M1, 3(x,)] +
7 4w M[3(X,ey.)» 4(X,,,)] = 17+3+9 = 29
Xjey = S
8 o 7 VM’ (X)) = 7+6+4 =17 >
6 7 B(X) = V(M’(X)) + M1, 3(x,)] +
o 4 7 M[3(X,qy.1)» 5(X,,) = 17+3+8 = 28
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Branch and Bound Design Technique

2 3 Jxlev
1 O 36 Xy =5
2 8 57 6 o
Xjev-1 3% ¢ 9 w 6
6 7T 9 o
T b e

VIV (X)) = 6+6 = 12 >
B(X) = V(M’(X)) + M[1, 3(x))] + M[3(x,), 2(x3)] + M[2(X,,,_1)s 5(X,,)]
= 1243+5+4 =24

2 3 Xy
-k -
[¢.0] 7/
2 8 74 Xlev=4
Xjev-1 3 B 938 © 6
-6 7 9 % 6 7 oo
gl

VIV (X)) = 6+7 =13 >
B(X) = V(M (X))+M[1,3(x )]+M[3(x,),2(X) | +M[2(X,,_)s4 (X, )]
= 13+3+5+7 =28

C(X)= Optcost = M[1, 3] + M[3, 2] + M[2, 5] + M[5, 4] + M[4, 1] = 3+5+4+6+6 =24
In general, branch&bound is the method of choice for TSP, although it does not always
work this well.

40
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Brach and Bound Design Technique
0-1 Knapsack Example:

Suppose we three objects (n=3) and w = {5, 10, 1}, p = {20,30, 2},
and kcap=10.

B= b(x) = 35; ratknap() = (1,1/2,0) = 35

(-5-) Curwt=0
w=5,10,1
p =20,30,2
w=4,3,2
() | B=3s B =30 0 P
curwt =5 curwt =0
\Q Pruned
because of
0.1,-) B =30 b(x) =B.
curwt =10
WQ
Pruned C(X) =30,
infeasible 0.1.0) Curwt=10

optprofit =30
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