Backtracking and B&B Design Technique

Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

• Backtracking design technique is applicable to problems whose solutions can be expressed as sequences of decisions.

• It is based on a search of an associated state space tree modeling all possible sequences of decisions.

• In its basic form, backtracking resembles a depth-first search in a directed graph.

• Backtrack strategy finds all solutions to a given problem by searching for all goal states in a state space tree associated with the problem.

• When a node is accessed during a backtracking search, it becomes the current node being expanded (e-node), but immediately its first child not yet visited becomes the new e-node. 2

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

• Backtracking is a recursive method of building up feasible solutions one at a time.

• In an unmodified form, backtracking is exhaustive: all possible feasible solutions are considered.

- Methods involving pruning often reduce the total number of feasible solutions generated, which makes the resulting algorithm much more efficient.
- Backtracking approach also invokes a bounding function to prune more problem states.

• We assume for decision-making process that the decision x_k at stage k must be drawn from a finite set S_k of choices. • For each k > 1, the choices available for decision x_k may be limited by choices that have already been made for x_1, \ldots, x_{k-1} . In other words, decision x_k may be restricted to a strict subset of S_k .

• For a given problem instance, suppose n is the maximum number of decision stages that can occur. For $k \le n$, we let P_k denote the set of all possible sequences of k decisions, represented by k-tuples $(x_1, x_2, ..., x_k)$.

•Elements of P_k are called problem states, and problem states that correspond to solutions to the problem are called goal states.

• Given a problem state $(x_1, x_2, ..., x_{k-1}) \in P_{k-1}$, we let $D_k(x_1, x_2, ..., x_{k-1})$ denote the decision set consisting of the set of all possible choices for decision x_k .

• More precisely, for $(x_1, x_2, ..., x_{k-1}) \in P_{k-1}$,

 $D_{k}(x_{1},x_{2},...,x_{k-1}) = \{ x_{k} \in S_{k} \mid (x_{1},x_{2},...,x_{k}) \in P_{k} \}$

- Letting \emptyset denote the null tuple (), note that $D_1(\emptyset)$ is the set of choices for x_1 ; that is, $D_1(\emptyset) = S_1$.
- The decision sets $D_k(x_1, x_2, ..., x_{k-1})$, k = 1, ..., n, determine a decision tree T of depth n, called the state space tree.
- The nodes of T at level k, $0 \le k \le n$, are the problems states $(x_1,x_2,...,x_k) \in P_k$ (P₀ consists of a null tuple).
- •For $0 \le k < n$, the children of $(x_1, x_2, ..., x_{k-1})$ are the problem states $\{(x_1, x_2, ..., x_{k-1}) \mid x_k \in D_k(x_1, x_2, ..., x_k)\}$.

The General Backtracking Paradigm:

Procedure **BacktrackRec**(k)

Input: - k (a nonnegative integer, 0 on the initial call)

- implicit state space tree T associated with the given

problem and decision set D_k , where $D_k = \emptyset$ for $k \ge n$.

- We assume that an implicit ordering exists for the elements of $D_k(x_1, ..., x_{k-1})$.
- Explicit global array X[1:n] maintaining problem states of T, where X[1],...,X[k] are assumed already defined
- bounding function Bound

Output: all goals that are descendants of (X[1],...,X[k])k = k +1

For each
$$x_k \in D_k (X[1],...,X[k-1]) do$$

 $X[k] = x_k$
 $If (X[1],...,X[k])$ is a goal state *then*Print (X[1],...,X[k])
 If not.Bounded(X[1],...,X[k]) *then Call* backtrackRec(k)₆

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

Example: 0-1 knapsack problem.

- The total number of n-tuples is 2ⁿ, but not all of these are feasible.
- A naïve backtracking algorithm is shown below, which performs no pruning: all 2ⁿ possibilities are generated.
 Since it takes Θ(n) time to check an n-tuple for feasibility, the entire algorithm is Θ(n.2ⁿ).
- The procedure would be invoked by: optprofit = 0; knap (1,&optprofit, optx, w,p,n,kcap);

```
void function knap (int lev, int *optprofit, int optx [LEN], int
w[LEN], int p[LEN], int n, int knap)
 if lev = = (n+1) then
    if \sum w_i x_i \leq knap then
                            // check feasibility
        if \sum p_i x_i > * optprofit then // compare profit to opt
           *optprofit = \sum p_i x_i
           optx = x //whole array assignment, x is a global variable
        }
        else
                                // lev \leq n; try both choices for x_{lev}
               X_{1ev} = 1;
                knap(lev+1, &optprofit, optx, w, p, n, knap);
                x_{1ev} = 0;
                knap(lev+1, & optprofit, optx, w, p, n, knap);}}
```

CEng 567

• The recursive calls generated by this procedure (knap) can be represented by a binary tree, called the state space tree of the problem instance.

• When n=3, the tree is as follows, where at each node we record the current value of x ('-' indicates an unspecified coordinate).

• The revised algorithm for the knapsack problem given below uses pruning whenever $\sum w_i x_i > \text{knap}$ (or M).

- In this new algorithm, the parameter curwt records the weight $\sum_{1 \le i \le lev-1} w_i x_i$ of the partial solution $(x_1, x_2, \dots, x_{lev-1}, -, \dots, -)$.
- •The procedure would be invoked by:

optprofit = 0; knap_1 (1,0,&optprofit, optx, w,p,n,kcap);

```
void function knap 1 (int lev, int curwt, int *optprofit, int optx
[LEN], int w[LEN], int p[LEN], int n, int knap)
{
        . . .
        . . .
               //\text{lev} \le n; before setting xlev = 1, check feasibility)
        else
         if (curwt + w_{lev}) \leq knap the
            x_{1ev} = 1;
            knap 1(lev+1, curwt+wlev, &optprofit, optx, w, p, n, knap);
          }
            xlev = 0; // no check is needed here
            knap 1(lev+1, curwt, &optprofit, optx, w, p, n, knap);
        }
```

CEng 567

Bounding functions:

- Can we do a better pruning job than just checking for feasibility of subsolutions? The answer is yes, in many cases.
- A more sophisticated pruning technique involves the use of a bounding function. A bounding function generates an upper limit (in the case of maximization) of the profit that a partial solution can possibly generate.
- A bounding function is any function B defined on the set of nodes of the state space tree that satisfies the following properties:
- 1) If X is a feasible solution (lev=n) then B(X) = C(X) = the profit incurred by X
- 2) For any feasible partial solution X, $B(X) \ge C(X)$.
- Therefore, B(X) provides an upper bound on the profit of any feasible solution that is a descendant of X.
- We can use a bounding function B(X) to prune the state space tree as follows:
- Suppose, at some stage of the backtrack, that $B(X) \leq OptP$. Then, we can ignore all descendants of X since none of them can yield a profit higher than OptP.

12

 Effective bounding functions must have the following properties: Backara Reg casy estor recomputerici, Spring 2006 CEng 567

 Be close to C(X), maximum profit of any feasible solution.

- By continuing the 0-1 knapsack problem example, let us now apply a bounding function to the problem.
- An obvious bounding function is to assign to node X the profit produced by the rational knapsack problem for the remaining capacity and the remaining objects.
- That is, given a feasible partial solution $X=(x_1,x_2,...,x_{lev},-,...,-); 0 \le lev \le n$, define B(X) as; B(X) = $\sum_{1 \le i \le lev} p_i x_i + ratknap(lev, kcap - \sum_{1 \le i \le lev} w_i x_i)$

= $\sum_{1 \le i \le lev} p_i x_i$ + ratknap(lev, kcap - curwt)

- Thus, B is the actual profit obtainable from objects 1,2,...,lev plus the optimal profit from the remaining objects and remaining capacity, but allowing rational x's.
- With this as a precondition, the following algorithm applies the bounding function.

```
void function knap 2 (int lev, int curwt, int *optprofit, int optx [LEN], int
w[LEN], int p[LEN], int n, int knap)
{
          . . .
          else
                               //\text{lev} \le n; before setting x_{\text{lev}} = 1, check feasibility)
           {
                    b(x) = \sum_{1 \le i \le lev} p_i x_i + ratknap(lev, kcap - curwt)
                     if b(x) > optprofit then // if B \le optprofit, do nothing
                        if (curwt + w_{lev}) \le knap then
                         x_{lev} = 1;
                         knap_2(lev+1, curwt + w<sub>lev</sub>, &optprofit, optx, w, p, n, knap);
                     if b(x) > optprofit then // note that optprofit might have
increased since it was last tested
                                                        // no check is needed here
                     x_{1ev} = 0;
                    knap 1(lev+1, curwt, &optprofit, optx, w, p, n, knap);
    Backtracking-B&B Design Technique, A.Yazici, Spring 2006
                                                                                          14
                                                       CEng 567
```

Example: Suppose we three objects (n=3) and w = $\{5, 10, 1\}$, p = $\{20, 30, 2\}$, and kcap=10.

Backtracking for TSP

• Assume that the problem is to find the minimum cost Hamiltonian circuit starting and ending at vertex 1.

• We can represent a Hamiltonian circuit as a permutation of the integers $\{2,...,n\}$, where n is the number of vertices in the graph, which is an (n-1)-tuple.

• Let's denote an (n-1)-tuple by $X = (x_1, ..., x_{n-1})$, where we require that $\{x_1, ..., x_{n-1}\} = \{2, ..., n\}$.

• Then the following algorithm is a basic backtracking method for the TSP.

Backtracking for TSP

Procedure TSP (lev: integer; var optcost: integer; var optx : arraytype; n:integer)

Begin

```
If lev = = n then { /* we have a Hamiltonian circuit */

C = Cost of X;

If C < optcost then {

Optcost = C;

Optx = x;

}}

else

for x_{lev} = 2 to n do

if x_{lev} is distinct from x_1, ..., x_{lev-1} then

TSP(lev+1, optcost, optx, n)
```

end;

- This algorithm generates the entire state space tree for the problem instance.
- To speed it up, we need a bounding function $B(X) \le C(X)$ (note: we use \le since TSP is a minimization problem, \ge was used for maximization).
- There is no bounding function for TSP that is so obvious as RKP is for BKP.
- A bounding function can be developed by defining a cost matrix for the problem instance as a modified adjacency matrix and then applying the mathematical operation of matrix reduction.
- We now explain the process and an intuitive reason for why it works.
- First let's consider the operation of reduction. A matrix M is said to be reduced if the following properties hold:
 - 1. all entries in M are non-negative
 - 2. every row and column of M contains at least one zero element
- M is the cost matrix for a TSP instance defined as follows:
 - 1. M(ij) = cost of edge ij
 - 2. $M(ij) = \infty$ if there is no edge or if i = j

Example TSP:

				$\overline{}$
	∞	3	5	8
N/	3	œ	2	7
M =	5	2	œ	6
	8	7	6	8

The reduction is accomplished by the following steps: subtract 3 (min of the row) from the first row subtract 2 from the second row subtract 2 from the third row subtract 6 from the fourth row subtract 1 (min of the first column) from the first column subtract 0 from the second column subtract 0 from the third column subtract 4 from the fourth column Therefore, V(M) = 18. For this simple graph, there are only three possible Hamiltonian circuits: the costs are as follows:

1 2 3 4: cost = 3 + 2 + 6 + 8 = 19

 $1 \ 2 \ 4 \ 3: \cos t = 3 + 7 + 6 + 5 = 21$

1 3 2 4: cost = 5 + 2 + 7 + 8 = 22

Note that V(M) = 18 is less than any of these. It can be proved that in general, $V(M) \le$ minimum cost Hamiltonian circuit.

- For a bounding function, we really want a function that can be computed for partial solutions and that yields a lower bound on the minimum cost of completing the partial solution.
- Suppose we have a partial solution $X = (x_1, x_2, ..., x_{lev}, -, ..., -); 0 \le lev \le n-1$ which presents a path

which presents a path

1 $x_1 x_2 \dots x_{lev}$; all x's distinct

• A completion of X to a Hamiltonian circuit is a path from x_{lev} to node 1 having intermediate vertices in the set $\{2...n\} - \{x_1, x_2, ..., x_{lev}\}.$

Define an (n-lev) × (n-lev) matrix M', which is derived from M as follows:

- copy M to M'
- if lev < n-1 then M'[x_{lev} , 1] = ∞
- delete rows 1, $x_1, x_2, \dots, x_{lev-1}$ from M'
- delete columns x_1, x_2, \dots, x_{lev} from M'

• Using M', we can define a bounding function for X1 as Backtracking-B&B Design Technique, A.Yazici, Spring 2006 follows:

Procedure TSP (lev: integer; var optcost: integer; var optx : arraytype; n:integer)

begin

```
If lev = n then begin /* we have a Hamiltonian circuit */
  C = Cost of X;
  If C < optcost then begin
     Optcost = C;
     Optx = x;
  end; end
else begin
     Compute B = B(X)
    x_{1ev} = 2;
     while (B < optcost) and (x_{lev} \le n) do begin
              if x_{lev} is distinct from x_1, \ldots, x_{lev-1} then
                         TSP(lev+1, optcost, optx,n)
             x_{lev} = x_{lev} + 1
       end; end {else}
```

end;

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

An Example for TSP:

 $B(X) = V(M'(X)) + M[1,x_1] + M[x_1,x_2] + \dots + M[x_{lev-1},x_{lev}]$

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

CEng 567

B=b(x) = Matreduc() = 20

$$x_{lev} = 3$$

$$V(M'(X)) = 8 + 6 + 6 = 20 \rightarrow$$

$$B(X) = V(M'(X)) + M[1, 2(x_1)] +$$

$$M[2(x_{lev-1}), 3(x_{lev})] = 20 + 8 + 5 = 33$$

$$6 \quad \infty \quad 6$$

$$7 \quad 6 \quad \infty$$

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

Optcost = M[1, 2] + M[2, 3] + M[3, 4] + M[4, 5] M[5, 1] = 8+5+9+6+7 = 35

C(X) = Optcost = M[1, 2] + M[2, 3] + M[3, 5] + M[5, 4] M[4, 1] = 8+5+8+6+6 = 33

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

$$\begin{array}{ll} x_{lev} = 3 & V(M'(X)) = 8 + 7 = 15 \rightarrow B(X) = \\ \infty & 8 & V(M'(X)) + M[1, 2(x_1)] + M[2(x_2), 4(x_3)] + M[4(x_{lev-1}), 3(x_{lev})] \\ 7 & \infty & = 15 + 8 + 7 + 9 = 39 \end{array}$$

C(X) = Optcost = M[1, 2] + M[2, 4] + M[4, 3] + M[3, 5] + M[5, 1] = 8+7+9+8+7 = 39

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

CEng 567

$$\begin{array}{ll} x_{lev} = 5 & V(M'(X)) = 3 + 8 = 11 \rightarrow B(X) = \\ 3 & \infty & V(M'(X)) + M[1, 2(x_1)] + M[2(x_2), 4(x_3)] + M[4(x_{lev-1}), 5(x_{lev})] \\ \infty & 8 & = 11 + 8 + 7 + 6 = 32 \end{array}$$

C(X) = Optcost = M[1, 2] + M[2, 4] + M[4, 5] + M[5, 3] + M[3, 1] = 8+7+6+8+3 = 32

$$\begin{array}{ll} x_{lev} = 3 & V(M'(X)) = 9 + 6 = 15 \Rightarrow \\ \infty & 9 & B(X) = V(M'(X)) + M[1, 2(x_1)] + M[2(x_2), 5(x_3)] + M[5(x_{lev-1}), 3(x_{lev})] \\ 6 & \infty & = 15 + 8 + 4 + 8 = 35 \end{array}$$

$$\begin{array}{ll} x_{lev} = 4 & V(M'(X)) = 3 + 9 = 12 \rightarrow \\ 3 & \infty & B(X) = V(M'(X)) + M[1,2(x_1)] + M[2(x_2),5(x_3)] + M[5(x_{lev-1}),4(x_{lev})] = 12 + 8 + 4 + 6 = 30 \\ \infty & 9 \end{array}$$

 $\begin{array}{ll} x_{lev} = 4 & V(M'(X)) = 6 + 7 = 13 \rightarrow \\ \infty & 6 & B(X) = V(M'(X)) + M[1,3(x_1)] + M[3(x_2),2(x_3)] + M[2(x_{lev-1}),4(x_{lev})] \\ 7 & \infty & = 13 + 3 + 5 + 7 = 28 \end{array}$

C(X) = Optcost = M[1, 3] + M[3, 2] + M[2, 4] + M[4, 5] + M[5, 1] = 3+5+7+6+7 = 28.

$$\begin{array}{ll} x_{lev} = 5 & V(M'(X)) = 6 + 6 = 12 \rightarrow B(X) = \\ 6 & \infty & V(M'(X)) + M[1, 3(x_1)] + M[3(x_2), 2(x_3)] + M[2(x_{lev-1}), 5(x_{lev})] \\ \infty & 6 & = 12 + 3 + 5 + 4 = 24 \end{array}$$

$$C(X) = Optcost = M[1, 3] + M[3, 2] + M[2, 5] + M[5, 4] + M[4, 1] = 3+5+4+6+6 = 24$$

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

CEng 567

• on the minimum cost Hamiltonian circuit of the original problem.

x _l	ev =	4		
8	œ	5	4	$V(M'(X)) = 4+3+6+4+1 = 18 \Rightarrow$
3	5	ø	8	$B(X) = V(M'(X)) + M[1(x_{lev-1}), 4(x_{lev})]$
ø	7	9	6	= 18 + 6 = 24
7	4	8	ø	

<i>Input</i> : -function $D_k(x_1,, x_{k-1})$ determining s	state space tree T			
	associated with the given problem and decision set D_k ,			
- bounding function <i>Bounded</i>	K			
Output: all goals to the given problem				
LiveNodes is initialized to be empty				
Call AllocateTreeNodes(Root)				
Root \rightarrow parent := nil				
Call Add(LiveNodes, Root)	// add root to list of			
live nodes				
While LiveNodes is not empty do				
Call Select(liveNodes,E-node,k)	// select E-node from			
live nodes				
For each $X[k] \in D_k$ (E-node) do	// for each child of			
the E-node do				
Call AllocateTreeNode(child)				
Child \rightarrow info := X[k]				
Child \rightarrow parent := E-node				
If answer (child) then	// if child is a goal			
node then				
Call Path (child)	// output path from			
child to root	34			
Backtracking-B&B Design Techniquet A. Brziei, Spring O(Child) then CEng 567	54			
Call Add(I iveNodes Child)	// add child to list of			

• Immediately upon expanding the current E-node, this E-node becomes a dead node and a new E-node is selected from LiveNodes.

• Thus B&B is quite different from backtracking, where we might backtrack to a given node many times, making it the E-node each time all its children have finally been generated or algorithm terminates.

• The nodes of the state space tree at any given point in a B&B algorithm are therefore in one of the following four states: *E-node, live* node, *dead* node, or *yet generated*.

• As with backtracking, the efficiency of B&B depends on the utilization of good bounding functions. Such functions are used in the attempt to determine solutions by restricting attention to small portions of the entire state space tree.

• When expanding a given E-node, a child can be bounded if it can be shown that it cannot lead to a goal node.

• We illustrate B&B by revisiting Travel Salesman Problem (*TSP*), where the data structure *LiveNodes* is a queue. Such a B&B, called FIFO B&B, involves performing a breadth-first search of the state space tree. Initially the queue of live nodes is empty.

• The algorithm begins by generating the root node of the state space tree and enqueueing it in the queue *LiveNodes*. At each stage of the algorithm a node is dequeued from *LiveNodes* to become the new E-Backtracking-B&B Design Technique Allaricie Spring 2006 en of the *E-node* afe then generated.

. The children that are not bounded are englished (as they are concreted

Procedure TSP (lev: integer; var optcost: integer; var optx : arraytype; n:integer) Var B,C,Count: integer; NextCoord: array [1..n] of 2..n; NextB: array [1..n] of integer begin

```
If lev = n then begin /* we have a Hamiltonian circuit */
  C = Cost of X:
If C < optcost then begin
     Optcost = C; Optx = x;
 end: end
else begin
     Count = 0;
     For x_{lev} = 2 to n do
     If x_{lev-1} is distinct from x_1, x_2, ..., x_{lev-1} then Begin
                 Count = Count + 1; NextCoord[Count] = x_{lev};
                 NextB[Count] = B(x); /* you compute */
     End; /* NextCoord and nextB are n-lev arrays */
     Sort NextCoord and NextB ascending order
     Count = 1;
     while (Count \leq n-lev) and (NextB[Count] \leq optcost) do begin
                 if xlev is distinct from x_1, ..., x_{lev-1} then
                  x_{lev} = NextCoord [Count]
                 TSP(lev+1, optcost, optx,n)
             Count = count + 1
        end; end {else}; end;
Backtracking-B&B Design Technique, A.Yazici, Spring 2006
                                                         CEng 567
```

Procedure TSP

Figure: The State Space Tree for the Branch and Bound Approach

CEng 567

x _l	ev =	2		$x_{lev} = 3$	$x_{lev} = 4$	$x_{lev} = 5$
ø	5	7	4	8 ∞ 7 4	8 ∞ 54	8 ∞ 5 7
3	œ	9	8	3 5 9 8	3 5 ∞ 8	$3 5 \infty 9$
6	9	ø	6	6 7 ∞ 6	6796	679 x 0
7	8	6	%	7 4 6 ∞	7480	o 7486

 $V(M'(X)) = 4+3+6+6+1 = 20 \rightarrow B(X) = V(M'(X)) + M[1(xlev-1), 2(xlev)] = 20 + 8 = 28$ $V(M'(X)) = 4+5+6+4+2 = 21 \rightarrow B(X) = V(M'(X)) + M[1(xlev-1), 3(xlev)] = 21 + 3 = 24$ $V(M'(X)) = 4+3+6+4+1 = 18 \rightarrow B(X) = V(M'(X)) + M[1(xlev-1), 4(xlev)] = 18 + 3 = 24$ $V(M'(X)) = 7+5+3+6+4+2 = 20 \rightarrow B(X) = V(M'(X)) + M[1(xlev-1), 5(xlev)] = 20+7 = 27$

Backtracking-B&B Design Technique, A.Yazici, Spring 2006

 $V(M'(X)) = 6+6 = 12 \rightarrow$ B(X) = V(M'(X)) + M[1, 3(x₁)] + M[3(x₂), 2(x₃)] + M[2(x_{lev-1}), 5(x_{lev})] = 12+3+5+4 = 24

V(M'(X)) = 6+7 = 13 → B(X) = V(M'(X))+M[1,3(x₁)]+M[3(x₂),2(x₃)]+M[2(x_{lev-1}),4(x_{lev})] = 13+3+5+7 = 28

C(X)= Optcost = M[1, 3] + M[3, 2] + M[2, 5] + M[5, 4] + M[4, 1] = 3+5+4+6+6 = 24 In general, branch&bound is the method of choice for TSP, although it does not always work this well.

0-1 Knapsack Example:

Suppose we three objects (n=3) and $w = \{5, 10, 1\}, p = \{20, 30, 2\},\ and kcap=10.$

