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D & C Design Technique
The Divide & Conquer strategy can be described in

general terms as follows:
• A problem input (instance) is divided according to

some criteria into a set of smaller inputs to the same
problem.

• The problem is then solved for each of these smaller
inputs, either recursively by further division into
smaller inputs or by invoking an ad hoc or priori
solution. Ad hoc solutions are often invoked when the
input size is smaller than some preassigned threshold
value, i.e., sorting single element lists.

• Finally, the solution for the original input is obtained by
expressing it in some form as a combination of the
solutions for these smaller inputs.
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D & C Design Technique
For convenience, we formulate Divide & Conquer

(DANDC) as a procedure.
Procedure DANDC (p,q)

Global n, A(1:n); // 1 ≤ p ≤ q ≤ n //
Integer m,p,q;
If Small (p,q) then

Return (G(p,q))
Else m � Divide (p,q) // p ≤ m < q //

Return(Combine(DANDC(p,m),DANDC(m+1,q)))
Endif

End DANDC



D&C Design Technique, A.Yazici, Spring 2006 CEng 567
4

D & C Design Technique

g(n) if n is small (n < thershold)
T(n) ∈

aT(n/b) + d(n) + c(n) Otherwise

T(n) = 2T(n/2) + d(n)

A general case:
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D & C Design Technique

Example: (Binary Search)
• It is desirable to search a sorted array for a key.
• We first check the middle element; if it is equal to key, then we

are done.
• If it is less than key, then we perform a binary search on the

upper half of the array
• and vice versa if it is greater than the key.

Recurrence relation for Binary search is
T(n) = T(n/2) + c

T(n) = 1 + c.lgn by using the subtitution method,
then T(n) is Θ (lgn).
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Example: (Binary Search)
function binsearch (A[1:n],key)

if n =0 or key > A[n]
then return n +1

else return (binrec (A[1:n],key)

function binrec(A[i:j],x)
// Binary search for x in subarray A[i:j] with the promise that

A[i-1] < x ≤ A[j] //
if i= j then return i

k � (i+j) /2
if x ≤ A[k] then return binrec(A[i:k],x)

else return binrec (A[k+1:j],x)



D&C Design Technique, A.Yazici, Spring 2006 CEng 567
7

D & C Design Technique

3126121298830-2-5

1110987654321

x = 12 ≤ A[k]?
i k j no

i k j yes
i j yes
ik j no

ij i =j: stop and return 8.
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Example (Interpolation search): One improvement suggested for

binary search is to try to guess more precisely where the key
being sought falls within the current interval of interest (rather
than blindly using the middle element at each step).

• This mimics the way one looks up a number in the telephone
directory. This method is called interpolation search, which
requires only a simple step modification to the program above.

k = (i+j)/2 is derived from i/2- i/2 + i/2 + j/2 = i + ½(j-i).
• Interpolation search simply amounts to replacing ½ in this

formula by an estimate of where the key might be based on the
values available: ½ would be appropriate if v (key) were in the
middle of the interval between a[i] and a[j], but we might have
better luck trying

• k = i + [(v – a[i])/(a[j] – a[i])] * (j-i).
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Example (Interpolation search):

k = i + [(v – a[i])/(a[j] – a[i])] *(j-i)

XSRPNMLIHGEEECAAA

1716151413121110987654321

P R S X
S X

k= 1 + [(19-1)/(24-1)]*(17-1)=13, where i=1, j=17, a[i]=1, a[j]=24,
and v=19 (index of S).

k = 14 + [(19 – 16)/(24-16)]*(17-14) = 15, where i = 14, j =17,
a[i] = 16, a[j] = 24.

k = 16 + [(19 – 19)/(24-19)]*(17-16) = 16, where i = 14, j =17,
a[i] = 16, a[j] = 24,
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D & C Design Technique
Example (Interpolation search):

k = i + [(v – a[i])/(a[j] – a[i])] *(j-i)

3126151298830-2-5

1110987654321

i j v = 12 ≤ A[k]?

k k = 1 + [(12- (-5))/(31- (-5))]*(11-1) = 6
k = 7 + [(12- 9)/(31- 9)]*(11- 7) = 8

ij i =j: stop and return 8.
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Example (Interpolation search):
• Interpolation search manages to decrease the number of

elements examined to about lglgN.
• This is a very slowly growing function, which can be thought

constant for practical purposes.
• If N is one billion, lglgN < 5.
• However, interpolation search requires some computation and

assumes that the keys are rather well distributed over the
interval.

• For small N, the lgN cost of straight binary search is close
enough to lglgN that the cost of interpolating is not likely to be
worthwhile.

• It certainly should be considered for large files, for
applications where comparisons are particularly expensive, or
for external methods where high access costs are involved.
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Example: (Max-Min problem)
• A Divide&Conquer approach is to break the array in half, find

the max and min of each half, and then the combination step
involves setting max to the larger of the two sub-maxes and min
to the smaller of the two sub-mins.

• Recurrence Relation for Max-Min of size n is
T(n) = 2T(n/2) + 2; T(2) = 1.

• If we solve this recurrence relation we find that T(n) = 3n/2–2,
which means T(n) is Θ(n).
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Example: (Max-Min problem)
function max-min (A[1:n],Lo,Hi,max,min)

integer min1,min2,max1,max2;
if Hi= Lo

then max = Hi, min = Lo
if Lo = Hi –1

if A[Lo] < A[Hi] then max = Hi, min = Lo
else max = Lo, min = Hi

else return (max-min(A[1:n],Lo,(Lo+Hi)/2,max1,min1)
return (max-min(A[1:n],(Lo+Hi)/2 +1,Hi,max2,min2)

return combine(A[1:n], min1,min2,max1,max2)

function combine(A[1:n], min1,min2,max1,max2)
if min1 < min2 then min = min1
else min = min2
if max1 > max2 then max = max1
else max = max2
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Example: (Merge Sort): The merge sort closely follows the D&C

paradigm. Intuitively, it operates as follows:

861652520450423380351285254179

861|520450423|254652|380351285|179

520||450861|423|254652||351380|285|179

520||450861||423652||351380||285

520|450254|861||423351||652179|285||380

520450254861423351652179285380

10987654321

Analysis of MERGE-SORT:
Divide: computes the middle of the subarray, which takes constant time. Thus,
Θ(1).
Conquer: we recursively solve two subproblems, each of size n/2, which
contributes 2T(n/2) to the running time.
Combine: Merge procedure takes time Θ(n).
Then, if n = 1, T(n) = Θ(1),

if n > 1, T(n) = 2T(n/2) + Θ(n).
T(n) is Θ(nlgn).
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Example: (Quick Sort): Quick sort is well known D&C algorithm

for sorting. Here is the three-step D&C process for sorting a
typical subarray A[p..r].

• Divide: The array A[p..r] is partitioned (rearranged) into two
nonempty subarrays A[p..q] and A[q+1..r] such that each
element of A[p..q] is less than or equal to each element of
A[q+1..r]. The index q is computed as part of this partitioning
process.

• Conquer: The two subarrays A[p..q] and A[q+1..r] are sorted by
recursive calls to quıcksort.

• Combine: Since the subarrays are sorted in place, no work is
needed to combine them: the entire array A[p..r] is now sorted.

keys ≤ pivot, v v keys > pivot, v

i j
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Example: (Quick Sort):
• A(1:n) is to be sorted. We permute the elements in the array so that for

some i, all the records with keys less than v appear in A[1], …, A[i], and all
those with key equal to v or greater appear in A[i+1], …, A[n] to sort both
these groups of elements.

The following procedure implements the quick sort.
QUICKSORT (A,p,r)
if p< r

then q � PARTITION(A,p,r)
QUICKSORT (A,p,q)
QUICKSORT (A,q+1,r)
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• To sort an entire array A, the initial call is QUICKSORT(A,1,length[A]).
• The key to the algorithm is the PARTITION procedure, which rearranges the

subarray A[p..r] in place.
PARTITION (A,p,r)
v � A[p]
i � p
j � r
while TRUE

do repeat j � j –1
until A[j] ≤ v

repeat i � i +1
until A[i] ≥ v

if i < j
then exchange A[i] ↔ A[j]

else break
repeat

A[p] = A[j] ; A[j] = v
End
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+∞858075706560555045

+∞8575=i +∞80=v7065605545=

j

50=v

+∞8575=i +∞80=j70=v656050=i+
∞

45=

j

55=v

+∞=j70=i758085=v6555=i
+∞=j

504560=v

+∞70=i7580=j85=v6555=i+∞5045=

j

60=v

+∞45
70

50 7555 806085=

j

856580 5575504565 60

+∞45
70

50 7555 806085=

j

8560=i80 5575504565

+∞45=i50556085807570=

j

65=v

10987654321



D&C Design Technique, A.Yazici, Spring 2006 CEng 567
19

D & C Design Technique
Analysis of Quicksort: It is not straightforward to analyze the

Quicksort since the division (partitioning) portion of the
algorithm is dynamically dependent on the data being sorted and
depends on the partitioning algorithm being used. The partition
algorithm requires n comparisons, isolates a single pivot
element.

• In the worst case, the pivot is at the end of the list and Quicksort
is the same as Selection sort and its complexity is Θ(n2). That is,
the recurrence for the running time is

T(n) = T(n-1) + Θ (n).
• To evaluate this recurrence, we observe that T(1) = Θ(1) and

then iterate:
T(n) = T(n-1) + Θ(n) = ∑1≤k≤n Θ(k) = Θ (∑1≤k≤n k) = Θ(n2).

• At best, the pivot splits the list in half and the recurrence is
T(n) = 2.T(n/2) + c.n

which indicates a best behavior of Θ(nlgn).
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D & C Design Technique

Theorem: Quicksort takes a time in O(nlgn) to
sort n elements on the average.

• For average case analysis, a statistical analysis
can be performed on Quicksort over all n!
possible permutations of the original data.

• The most natural assumption is that the
elements of T are distinct and that each of the n!
possible initial permutations of the elements is
equally likely.
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Theorem: Quicksort takes a time in O(nlgn) to sort n
elements on the average.

Proof:
• The assumption on the instance probability

distribution:
The pivot chosen by the algorithm when requested
to sort T[1,…,n] lies with equal probability in any
position with respect to the other elements of T.

• Each value has equal probability 1/n and the pivoting
operation takes linear time, g(n) = n+1.

• It remains to sort recursively two sub-arrays of size i
and (n-1-i).

• It can be shown that the probability distribution on the
sub-arrays is still uniform.
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• Since the partitioning step takes about n+1 comparisons (the

exact number depends on whether the “median of 3” or other
improvements are applied), we can write the approximate
running time function is as follows:

T(n) = n+1 + (1/n) ∑0≤i≤ n-1 [T(i) + T(n-1-i)]
Where i is the subscript of the element to the left of the pivot,
n≥ 2, and T(0) = T(1) = 0. This translates into T(2) = 3.

• The above running time function is based on averaging over all
possible values of i (note that both the best and worst cases are
included in the average).

• When summing over i, each term appears twice. That is, for
two different values of i, i and (n-1-i), are approximately the
same.

• Therefore,
T(n) = n+1 + (2/n) ∑0≤i≤ n-1 T(i), if n ≥ 2. (A)
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T(n) = n+1 + (2/n) ∑0≤i≤ n-1 T(i), if n ≥ 2. (A)

• Replacing n by n+1 gives:
T(n+1) = n+2 + (2/(n+1)) ∑0≤i≤ n T(i), if n ≥ 1. (B)

• Multiplying (A) by n results in:
nT(n) = n2 + n + 2∑0≤i≤ n-1 T(i) if n ≥ 2. (C)

• Multiplying B by (n+1) gives
(n+1)T(n +1) = n2 +3n + 2 +2∑0≤i≤ n T(i) if n ≥ 1. (D)

• Computing (D) – ( C), we obtain
(n+1)T(n+1) – nT(n) = 2n + 2 +2T(n); n ≥ 2.
(n+1)T(n+1) – (n+2)T(n) = 2(n + 1); n ≥ 2. (E)

• Rearranging and simplifying (E) by dividing both sides by
((n+1)(n+2)

T(n+1)/(n+2) – T(n)/(n+1) = 2/(n + 2); n ≥ 2.
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T(n+1)/(n+2) – T(n)/(n+1) = 2/(n + 2); n ≥ 2.

• Writing this recurrence for n = n-1, n-2, …, 3:
T(n)/(n+1) – T(n-1)/(n) = 2/(n + 1)
T(n-1)/(n) – T(n-2)/(n-1) = 2/(n)
T(n-2)/(n-1) – T(n-3)/(n-2) = 2/(n - 1)
…… ………… ………..
T(4)/5 – T(3)/4 = 2/5
T(3)/4 – T(2)/3 = 2/4

• Summing these (n-1) equations gives:
T(n+1)/(n+2) – T(2)/3 = ∑4≤i≤ n+2 2/i; n ≥ 2,

Since T(2) = 3,
T(n+1)= (n+2)[1+ ∑4≤i≤ n+2 2/i]; n ≥ 2,

• Replacing (n+1) (n ≥ 2) by n (n ≥ 3), we get
T(n)= (n+1)[1+ ∑4≤i≤ n+1 2/i]; n ≥ 3
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T(n)= (n+1)[1+ ∑4≤i≤ n+1 2/i]; n ≥ 3
• Now, we remove the (n+1)th term from the sum and subtract the

1st, 2nd, and 3rd terms, which results in:
T(n)= (n+1)+(n+1) ∑4≤i≤ n+1 2/i] =

(n+1)+(n+1)[∑1≤i≤ n 2/i –1–2/3–1/2]
= (n+1)+(n+1)∑1≤i≤ n 2/i – (n+1)–2(n+1)/3– (n+1)/2];
= (n+1)+(n+1)∑1≤i≤ n 2/i – (n+1)–2n/3 - 2/3– n/2 - 1/2
= 2(n+1)∑1≤i≤ n 1/i –7n/6 - 7/6 = ;

T(n)= 2(n+1) ∑1≤i≤n 1/i – 7n/6 - 7/6; n ≥ 3,
• Since ∑1≤i≤n 1/i is Θ(lgn), Therefore, T(n) is Θ(nlgn).
• We have shown that, on the average, Quicksort is an optimal

sorting algorithm.
• In practice, it has been found to be the most efficient sorting

method when a few modifications are included.
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NPOMGIL

MNP=jOGNMNGIL=i

SR=vTLPXMSRSMXPOGNIT=iL

RE=vL=jPMA SXEOGNITREOES AA=i

E=vL=jPMAXEGNITROSA=i

151413121110987654321

Example (Selection of the kth Largest Element):
Procedure SelectKth (var A; k,first,last)
Begin

PARTITION (A,first,last);
If k = p, then pivot is the desired element
Else if k < p, then SelectKth (A,k,first,first+p-2)
Else SelectKth (A, k-p, first+p, last)

End;

D & C Design Technique
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Example: (Multiprecision Multiplication of Integers)
• Multiplying n-figure large integers using the classic algorithm
requires a time in Θ(n2). By using D&C technique, we can reduce
the multiplication of two n-figure numbers to four multiplications
of n/2-figure numbers.
• More specifically, given x and y, which are both n-bit integers
(assume that n is even), break x and y into two n/2-bit integers as
follows:

x = a.2n/2 + b
y = c.2n/2 + d

Where a,b,c,and d are n/2-bits each. Then, the product of x and y
can be represented in terms of products of a,b,c, and d as follows:

xy = ac2n + (ad + bc).2n/2 + bd
• If we apply the same algorithm to the decimal numbers, then the
multiplications will be:

xy = ac10n + (ad + bc).10n/2 + bd

D & C Design Technique
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Example: (Multiprecision Multiplication of Integers)
Let us multiply 981 * 1234 = 1210554.
• We split each operand into two halves:
0981 gives rise to a = 09 and b = 81, and 1234 to c = 12 and d = 34.
• Notice that 981 = 102a + b and 1234 = 102c + d. Therefore, the
required product can be computed as

981 * 1234 = (102a + b) * (102c + d) = ac104 + (ad + bc)102 + bd =
09*12*104 + (09*34 + 81*12)*102 + 81*34
= 1080000 + 127800 + 2754 = 1210554.
• As you see, the above procedure still needs four half-size
multiplications: ac, ad, bc, bd.
• So we have reduced the n-bit product to four n/2-bit products and
two shift and add operations. This process is applied recursively
until only 1-bit products occur.
• We will show that the complexity of this algorithm is Θ(n2).

D & C Design Technique
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• We can apply an algebraic trick to reduce the problem to only
three single precision multiplications as follows:

xy = ac2n + [(a - b) (d - c) + ac + bd] 2n/2 + bd
The three subproblems are ac, (a-b)(d-c), and bd. Note that

[(a-b)(d - c) + ac + bd] = ad + bc
So the two formulas are equivalent.
Example:
ac = 09*12 = 108, bd = 81*34 = 2754, (a-b)*(d - c) = 90*46= 4140
Finally,

981 * 1234 = 108* 104 + (4140 + 108 + 2734)102 + 2734
= 1080000 + 127800 + 2754 = 1210554

Thus, the product is reduced to three multiplications of two-figure
numbers (09*12, 81*34, and 90*46) together with a certain number
of shifts (multiplications by powers of 10), additions and
subtractions.

D & C Design Technique
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Recurrence Relations for MPI Multiplication
For the four subproblems case,

T(n) = 4.T(n/2) + cn; subject to T(1) =1.
This assumes that the shift and add operations are of complexity
proportional to n. If one solves this recurrence,

T(n) = n2 + c(n2-n),
so T(n) is Θ(n2).

For the three subproblem case
T(n) = 3.T(n/2) + cn; subject to T(1) =1.

If we solve this recurrence;
T(n) = n1.59 + (1/2)cn(n0.59- 1)
T(n) = n1.59 (1 + c/2) – cn/2,

Therefore, T(n) is Θ(n1.59), which is considerable lower growth rate
than Θ(n2).

D & C Design Technique
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Conclusion
• Divide and conquer is just one of several powerful
techniques for algorithm design.
• Divide-and-conquer algorithms can be analyzed
using recurrences and the master method or
characteristic equation method.
• D&C can lead to more efficient algorithms
• However, although the Divide & Conquer approach
becomes more worthwhile as the instance to be solved
gets larger, it may in fact be slower than the classic
algorithm on instances that are too small.

D & C Design Technique
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