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• Dynamic programming can be viewed as a
generalization of the Divide and Conquer approach.
• As you know, Divide and Conquer design technique
partitions the problem into independent sub-problems
of the same type, solve the sub-problems recursively,
and then combine their solutions to solve the original
problem.
• In contrast, Dynamic programming is applicable
when the sub-problems are not independent, that is,
when sub-problems share subsubproblems.
• In this context, Divide and Conquer approach does
more work than necessary, repeatedly solving the
common subsubproblems.

Dynamic Programming Design Technique



Dynamic Prog. Design Technique, A.Yazici, Spring 2006 CEng 567
3

• Dynamic Programming differs from the Greedy
Design Technique since the greedy method produces
only one feasible solution, which may or may not be
optimal.
• While Dynamic Programming produces all possible sub-
problems at most once, one of which guaranteed to be
optimal.
• Optimal solutions to sub-problems are retained in a
table, thereby avoiding the work of recomputing the
answer every time a sub-problem is encountered.
• The use of these tabulated values makes it natural to
recast the recursive equations into an iterative program.

Dynamic Programming Design Technique
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• As mentioned, in DP, the problem is also divided into sub-
problems of the same type.
• Often subdivision can be expressed in terms of a recurrence of
the general form.

T(n) = f[T(n-1)]
• That is, the sate of the problem solution at stage n is related to
the state of the solution at stage n-1.
• The function f in the recurrence is the Principle of Optimality
(also coined by Bellman), that can be stated as follows:

An optimal sequence of decisions has the property that
whatever the initial state and initial decision are, the
remaining decision sequence must constitute an optimal
decision sequence with regard to the state resulting from the
first decision.

• Another way to say this: No matter how we got here, let’s do the
optimal thing from here on out.

Dynamic Programming Design Technique
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• Dynamic Programming is typically applied to
optimization problems. The development of a
dynamic programming algorithm can be broken into
a sequence of four steps:
1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a

bottom-up fashion and retain the results in a
structure (i.e., table)

4. Construct an optimal solution from computed
information

• Steps 1-3 form the basis of a DP solution to a
problem. Step 4 can be omitted if only the value of an
optimal solution is required.

Dynamic Programming Design Technique
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When should we look for a DP solution to a problem?
• Optimal substructure: we say that a problem exhibits optimal

substructure if an optimal solution to the problem contains
within it optimal solutions to sub-problems. Whenever a
problem exhibits optimal substructure, it is a good clue that
DP might apply.

• For a DP to be applicable, the space of sub-problems must be
“small” in the sense that a recursive algorithm for the problem
solves the same sub-problems over and over, rather than
always generating new sub-problems. Typically, the total
number of distinct sub-problems is a polynomial in the input
size.

• So whenever a recursion tree for the natural recursive solution
to a problem contains the same problem repeatedly and the
total number of different sub-problems is small, it is a good
idea to see if DP can be made to work.

Dynamic Programming Design Technique
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Example-1: The 0-1 Knapsack Problem (BNP)

Problem Instance: positive integers w1, …, wn, p1, …, pn, M (we
have n objects, where object i has weight wi and profit pi, and
M is the capacity of the knapsack.)

Feasible Solution: a vector (x1,…xn), where xi=0 or xi=1 and
∑0≤i≤n wixi ≤ M. In other words, the knapsack capacity cannot
be exceeded. Note that we allow a fraction of an object to be
placed into the knapsack.

Objective Function: P = ∑0≤i≤n pixi, where P is the profit
associated with (x1,…xn)

Optimal Solution: the maximum profit feasible solution.

Examples for DP Approach
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• 0-1 knapsack problem is NP-Complete. We will see
that a DP approach to this problem yields an
algorithm whose complexity depends on the size of
the knapsack capacity. Unfortunately, the capacity is
often large in problems of practical interest.

1. Characterize the structure of an optimal solution:
Consider xn: it is either 0 or 1.
If xn = 0, then the best profit we can attain is whatever we get

from the objects 1,2,…,(n-1).
If xn =1, we have a profit of pn plus whatever we can get from

the other objects, but now the capacity is reduced to M-wn
(clearly wn ≤ M must hold in this case).

The optimal solution is the better of these two feasible
solutions (i.e., the principle of optimality applies).

Dynamic Programming Design Technique
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2. Recursively define the value of an optimal solution: Let us now
state this in mathematical terms:

For 0 ≤ m ≤ M and for 1 ≤ j ≤ n, define P(j,m) to be the profit of
the optimal solution using objects 1,2,..,j and capacity M.
Then, we have the following recurrence relation:
P(n,M) = P(n-1, M), if wn > M
P(n,M) = max {P(n-1,M), pn + P (n-1, M-wn)}, if wn ≤ M

More generally, for 2 ≤ j ≤ n and 0 ≤ m ≤ M,
P(j,m) = P(j-1, m), if wj > m
P(j,m) = max {P(j-1,m), pj + P (j-1, m-wj)}, if wj ≤ m

Also we have the boundary conditions
P(1,m) = p1, if w1 ≤ m
P(1,m) = 0, if w1 > m

The optimal solution is P(n,M)

Dynamic Programming Design Technique



Dynamic Prog. Design Technique, A.Yazici, Spring 2006 CEng 567
10

• We could compute the DP solution by writing a recursive
function in a HLL. However, this top-down implementation
would be very inefficient. To see this, let T(n) be the time
required to calculate P(n,M) recursively.

• In general, we can write the following recurrence relation.
T(n) = 2.T(n-1) + c; subject to T(1) = 1.

• For solution of this recurrence, the first few terms of this
recurrence are;

T(2) = 2 + c, T(3) = 4 + 3c, T(4) = 8 + 7c
… ……
T(2k) = 2k-1 + c.2k-1 - c
T(n) = 2n (1+c)/2 – c

Therefore, T(n) is Θ(2n).
• It is important to note that the total number of sub-problems is

only n.M. This is the key observation: If n.M < 2n, it would be
less work to solve every sub-problem.

Dynamic Programming Design Technique



Dynamic Prog. Design Technique, A.Yazici, Spring 2006 CEng 567
11

3. Compute the value of an optimal solution in a bottom-up fashion
• Dynamic programming provides a method whereby the

maximum number of subproblems evaluated is n.M (which
hopefully is less than 2n).

• Also, it is possible that efficient implementations will avoid
many of the “obviously” non-optimal subproblems, so less
than M.n need be evaluated.

• First, solve all subproblems with j=1, then all subproblems
with j=2, …, and finally all subproblems with j=n.

• We use the same recurrence relations as before, but we are
solving bottom-up.

• It is easy to keep track of the progress of solutions using a
two-dimensional array so that we can look up the answer to a
subproblem whenever it is required later (this is important).

Dynamic Programming Design Technique
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Example instances:
Weights: 2,3,5,8,13,16
Profit: 1,2,3,5,7,10, Capacity, M = 30.

For this example, the following two-dimensional array of
subproblem solutions is generated. To see how the numbers
are generated, when j=1, the initial conditions apply, so
P(1,m) = 1, if 2 ≤ m
P(1,m) = 0, if 2 > m

When j=2, the recurrence becomes
P(2,m) = P(1,m) if m < 3
P(2,m) = max {P(1,m), 2+ P (1, m-3)}, if 3 ≤ m

[P(j,m) = P(j-1, m), if wj > m
P(j,m) = max {P(j-1,m), pj + P (j-1, m-wj)}, if wj ≤ m]

• The optimal profit is 18, but what are the contents of the
knapsack? This can be constructed from the table.

Dynamic Programming Design Technique
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4. Construct an optimal solution from computed information: The optimal
solution is

• P(6,30) = 18. Since 18 > P(5,30), object 6 must be included (so x6 = 1).
Therefore, p6 = 10 contributes to the overall profit. The 18 was computed
from P(6,30) = 10 + P(5,30-16), so we backtrack in the table to find
P(5,14) = 18 – 10 = 8.

• Since P(5,14) = P(4,14), object 5 is excluded (so x5 = 0).
• Since P(4,14) > P(3,14), object 4 must be included (so x4 = 1). Therefore,

p4 = 5 contributes to the overall profit. The 8 was computed from P(4,14) =
5 + P(3,14-8), so we backtrack in the table to find P(3,6) = 8 – 5 = 3.

• Since P(3,6) = P(2,6), object 3 is excluded (so x3 = 0).
• Since P(2,6) > P(1,6), object 2 must be included (so x2 = 1). Therefore,

p2 = 2 contributes to the overall profit. The 3 was computed from
P(2,6) = 3 + P(1,6-3), so we backtrack in the table to find P(1,3)= 3–2 = p1,
so object 1 is included, so x1 = 1.

• Therefore, the optimal knapsack is X= (1,1,0,1,0,1), yielding a weight of
(2+3+8+16) = 29, and a profit of (1+2+5+10) = 18.

• Note that if the optimal knapsack is not required (only optimal profit is
desired), then only two rows of the matrix need be retained.

Dynamic Programming Design Technique
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Example-2: Matrix Chain Products
• Given the matrices M1, M2,…, Mn, it is desired to

calculate M1• M2•…•Mn. The matrices must be
conformable; that is, the number of columns of Mi
must be the same as the number of rows of Mi+1.

• The overall product is calculated by multiplying any
two matrices at a time. A parenthesization of the
sequences M1, M2,…, Mn determines how the
product pairs are grouped.

• We can perform the multiplications using any
parethesization, but we cannot alter the left-to-right
order of the n matrices. So, the problem can be
formalized as follows:

Examples for DP Approach
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Example-2: Matrix Chain Products

Problem Instance: a sequence of n matrices M1, M2,…,
Mn, where the no. of columns of Mi = no. of rows of
Mi+1, for 0 ≤ i ≤ n-1.

Feasible Solution: any parenthesization of M1,M2,…, Mn.

Objective Function: Given parenthesization, the cost is
the total number of scalar multiplications required to
produce M1• M2•…•Mn

Optimal Solution: minimum cost.

Dynamic Programming Design Technique
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1. Characterize the structure of an optimal solution:
Given the sequence A, B, C, and D, there are five different
parethesizations:

((A• B)•C)•D
(A• (B• C))•D (A• B)•(C•D)
A• ((B•C)•D) A• (B•(C•D))

Which is the best parethesization?
• Note that it can be shown that in general there are

(2n-2)!/((n!).((n-1)!) different parethesizations of n matrices.
• This number is called the (n-1)st Catalan number, which arises

often in counting problems.
• It can be shown that (2n-2)!/((n!).((n-1)!) is Θ(4n/n3/2) using

the Sterling’s formula.
• This growth rate is enormous, therefore exhaustive

enumeration is out of the question for any reasonable sized n.

Dynamic Programming Design Technique
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• A reasonable cost measure is the total number of scalar
multiplications required. When multiplying a mxp matrix by a
pxr matrix, a total of m.p.r scalar multiplications are required
when using the standard formula

Cij = ∑1≤ k ≤ p aik.bkj; 1≤ i ≤ m, 1≤ j ≤ r
• We ignore the possibility of using Strassen’s method or

another to improve the performance for multiplying two
matrices.

• Consider the following example: A, B, C, and D, having
dimensions 5x3, 3x1, 1x4, and 4x6, respectively.

• By exhaustive enumeration:
((A• B)•C)•D = 5.3.1 + 5.1.4 + 5.4.6 = 155
(A• (B• C))•D = 3.1.4 + 5.3.4 + 5.4.6 = 192
(A• B)•(C•D) = 5.3.1 + 1.4.6 + 5.1.6 = 69
A• ((B•C)•D) = 3.1.4 + 3.4.6 + 5.3.6 = 174
A• (B•(C•D)) = 1.4.6 + 3.1.6 + 5.3.6 = 132

Dynamic Programming Design Technique
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2. Recursively define the value of an optimal solution
• Let’s see how DP can yield a dramatic improvement in the

computational complexity.
• If we are multiplying n matrices M1• M2•…•Mn the last

multiplication must be of the form (M1• M2•…•Mi) • (Mi+1•
M2•…•Mn) for some i ∈ {1,2,…,n-1}.

• For any particular choice of i, the best we can do is to find the
optimal parenthesizations for M1• M2•…•Mi and Mi+1•
M2•…•Mn.

• If these subproblems have costs s1 and s2, then in terms of
scalar multiplications total cost = s1 + s2 + r1cicn
where r1= no. of rows of M1, ci = no. of columns of Mi and no.
of rows of Mi+1, and cn = no. of columns of Mn.

Dynamic Programming Design Technique
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2. Recursively define the value of an optimal solution
• The optimal solution is obtained by finding the value

of i that minimizes the total cost.
• That is, if C(j,k) denotes the minimum number of

scalar multiplications required to multiply M1• M2 •
…•Mn, then we have
C(1,n) = min {C(1,i) + C(i+1,n) + r1cicn ; 1≤ i ≤ n-1

• Or more generally, the number of scalar
multiplications required to multiply Mj• Mj+1• …•Mk
are;
C(j,k) = min {C(j,i) + C(i+1,k) + rjcick ; j≤ i ≤ k-1

• The boundary conditions are:
C(j,j) = 0; 1≤ i ≤ n

Dynamic Programming Design Technique
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3. Compute the value of an optimal solution in a bottom-up
fashion:

To implement the DP algorithm, we proceed as follows:
• We start with the boundary conditions where we

calculate C(j,k) for j=k (product of 1 matrix).
• Next, we calculate C(j,k) for k = j+1 (products of 2

matrices), etc.
• Finally, we determine C(1,n) (the product of n

matrices).
• The table includes the optimum results of each

subsolution of the example problem.

Dynamic Programming Design Technique
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The sequence of the calculations is as follows:
C(1,1) = C(2,2) = C(3,3) = C(4,4) = 0
C(1,2) = 5.3.1 = 15
C(2,3) = 3.1.4 = 12
C(3,4) = 1.4.6 = 24

C(j,k) = min {C(j,i) + C(i+1,k) + rjcick}; j≤ i ≤ k-1

C(1,3) = min {C(1,1) + C(2,3) + r1c1c3, C(1,2) + C(3,3) + r1c2c3}
C(1,3) = min {0 + 12 + 5.3.4, 15 + 0 + 5.1.4} = min {72,35} = 35
C(2,4) = min {C(2,2) + C(3,4) + r2c2c4, C(2,3) + C(4,4) + r2c3c4}
C(2,4) = min {0 + 24 + 3.1.6, 12 + 0 + 3.4.6} = min {42,84} = 42

C(1,4) = min {C(1,1) + C(2,4) + r1c1c4, C(1,2) + C(3,4) + r1c2c4,
C(1,3) + C(4,4) + r1c3c4}

C(1,4) = min {0 + 42 + 5.3.6, 15 + 24 + 5.1.6, 35 + 0 + 5.4.6} =
min {132,69,155} = 69.

Dynamic Programming Design Technique
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3. Compute the value of an optimal solution in a bottom-up
fashion:

Dynamic Programming Design Technique

0 DD

24 (C.D)0 CC

42 B.(C.D)12 (B.C)0 BB
69 (A.B)(C.D)35 (A.B).C15 (A.B)0 AA
4, D3, C2, Bk=1, Aj

4. Construct an optimal solution from computed information:
The optimal solution is (AB)*(CD), which can constructed by
starting from the optimum solution for n matrices to 1 matrix.
Look into what suboptimal solutions are used to result in the
optimum solution at the end.
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Analysis of the DP solution:
• If we were to implement these recurrence relations

recursively, it can be shown that the complexity is
Θ(2n), which is much better than Θ(4n/n3/2), but still
exponential.

• The solution using DP design approach is to ask: how
many C(j,k)’s are there to be calculated? Since 1≤ j ≤
k ≤ n, the total number is n(n+1)/2, which is Θ(n2).

• Each C(j,k) can be calculated in time is Θ(n) if all
“previous” C(j,i) and C(i,k) are known. So the overall
algorithm is Θ(n3), which is a dramatic improvement.

Dynamic Programming Design Technique
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• As seen from the solution above, diagonal s contains the elements mij such
that j-i = s. The diagonal s=0 therefore contains the elements mii, 1≤i≤n,
corresponding to the “products” Mi. Here there is no multiplication to be
done, mij = 0 for every i.

• The diagonal s=1 contains the elements mi,i+1, 1≤i≤n, corresponding to the
products of Mi Mi+1.

• Finally when s>1 the diagonal s contains the elements mi,i+s corresponding to
the products of Mi Mi+1 … Mi+s.

• Now we have a choice: we can make the first cut in the product after any
matrices Mi Mi+1 … Mi+s.

• To find the optimum, we choose the cut that minimizes the required number
of scalar multiplications.

• For s>0 there are n-s elements to be computed in the diagonal s; for each of
these we must choose between s possibilities given by the different values of
k.

• The execution time of the algorithm is therefore in the exact order of
∑1≤s≤(n-1) (n-s)s = n ∑1≤s≤(n-1) s - ∑1≤s≤(n-1) s2

= n2(n-1)/2 –n(n-1)(2n-1)/6 = (n3- n)/6
Therefore, the execution of the algorithm is thus in Θ(n3).

Dynamic Programming Design Technique
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Example: All-Pairs Shortest Path in Graphs

Problem Instance: a graph G in which each edge e
of G has been assigned a non-negative weight (or
cost), w(e).

Feasible Solution: For all unordered pairs of distinct
vertices v, u, a path u-v is required.

Objective Function: ∑1≤ i ≤ k Dist(i)

Optimal Solution: The shortest feasible set of u-v
paths.
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Recursively define the value of an optimal solution
If G has n vertices, and if 1≤ k≤ n, define Sk(i,j) to be the length of the

shortest i-j path in G using only vertices from the set {1…k}.
For convenience, define Sk(i,i) = 0 for 1≤ k≤ n and 1≤ i ≤ n.
If we know Sk(i,j), how can we calculate Sk+1(i,j)?
Based on the fact developed above, if P is the shortest i-j path containing

intermediate vertices from {1,…k+1}, then we have two possibilities:
• If (k+1) ∉P then Sk+1(i,j) = Sk(i,j)
• If (k+1) ∈ P then P consists of a shortest i-(k+1) path joined to a shortest

(k+1)-j path.
If (k+1) leads to a shorter path then we place it in P, otherwise we exclude it.

Thus we have the following recurrence:
Sk+1(i,j) = min {Sk(i,j), Sk(i,k+1) + Sk(k+1,j)} for 0≤ k ≤ n, 1≤ i,j≤ n.

The initial conditions are:
Sk(i,j) = M(i,j) if i≠j
Sk(i,j) = 0 if i = j

All-Pairs Shortest Path in Graphs
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3. Compute the value of an optimal solution in a bottom-up fashion:
The pseudo-code for Floyd’s algorithm is as follows:
Procedure Floyd (W[1:n,1:n],P[1:n,1:n],S[1:n,1:n])
Input: W[1:n,1:n], weight matrix for a weighted digraph G
Output: P[1:n,1:n], matrix implementing shortest paths
S[1:n,1:n]), distance matrix where S[u,v] is the length (cost) of a shortest path
u to v in G)
for i = 1 to n do{

for j = 1 to n do{ // Intialize P and S
P[i,j] = 0;
S[i,j] = W[i,j]}}

For k = 1 to n do // update S and P using the recurrence relation
For i = 1 to n do

For j = 1 to n do{
If S[i,j] > S[i,k] + S[k,j] {

P[i,j] = k
S[i,j] = S[i,k] + S[k,j]}
}}

EndFloyd

All-Pairs Shortest Path in Graphs
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All-Pairs Shortest Path in Graphs
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All-Pairs Shortest Path in Graphs
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All-Pairs Shortest Path in Graphs
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All-Pairs Shortest Path in Graphs
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All-Pairs Shortest Path in Graphs
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4. Construct an optimal solution from computed information:
So, for example, the shortest a-e path is 4 and the shortest d-e path
is 2. The actual path can be determined by tracing back through
the matrices. Whenever an element changes, then vertex k is on
the path. So, for example, the a-e path is become 4 when k was b,
so the path is a-b-e.
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Example: Travel Salesman Problem, (TSP)

Problem Instance: a graph G in which each edge has a non-
negative weight (or cost).

Feasible Solution: one cycle, which passes through every
vertex exactly once (a Hamiltonian Circuit)

Objective Function: c(H) = ∑e∈H c(e), where H is a
Hamiltonian Circuit of G and c(e) is the cost of edge e.

Optimal Solution: the minimum cost Hamiltonian Circuit.

This problem is NP-Complete, so we do not expect a
polynomial-time algorithm.
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Recursively define the value of an optimal solution
To pose a DP algorithm, we must decompose the problem

instance. Suppose we have a graph G with n vertices and
w(i,j) is the weight (or cost) of edge ij. Any Hamiltonian
circuit H can be considered to start at vertex 1. Let k be the
last vertex in H before we return to vertex 1 (so 2 ≤ k ≤ n).

Then the optimal Hamiltonian circuit consists of:
1. an optimal path from vertex 1 to vertex k, passing through
all the vertices.

2. an edge from k to 1.
Next, consider the vertex j preceding k in the path from 1 to k.

Note that j∈{2,..n}–{k}. The optimal path from 1 to k can be
decomposed into:
• an optimal path 1 to j
• the edge from j to k

This process can be repeated and we can write the associated
recurrence relations.
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Let S be a subset of {2…n} and let k∈ S. Define P(S,k) to be the
cost of the optimal path from vertex 1 to vertex k, in which
the intermediate vertices are precisely those in S-{k}. Then,
the optimal Hamiltonian circuit cost is:
min{P(2…n}, k) + w(k,1)}, 2≤ k ≤ n

The P(S,k)’s can be calculated from the following recurrence
relations:

P(S,k) = min {P(S-{k},m) + w(m,k)}, if |S| > 1, m ∈ S – {k}
P(S,k) = w(1,k), if S = {k}
m represents the intermediate vertices in S, generating a path

from the first node to k going through m nodes (an edge from
each m to k exists). For a particular m, the situation is
depicted in the following diagram:

1
m

S-{k}
k
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Compute the value of an optimal solution in a bottom-up fashion:
First, we calculate all P(S,k) with |S| = 1, then all those with |S| =

2, …, and finally all those with |S| = n-1. Let’s work out an
example before analyzing the complexity of this approach.

6

5

ba

58 3

3d c

14 (min{13+3 (d-b)=16,
11+3 (d-c) = 14})

d{b,c,d}

12 (min{8+5 (c-b)=13,
9+3 (c-d) = 12})

c{b,c,d}

13 (min{8 + 5 (b-c)=13,
11 + 3 (b-d) = 14})

b{b,c,d}

11 (8 +3)d{c,d}

8 (5+3)c{c,d}

9 (6 +3)d{b,d}

8 (5+3)b{b,d}

11 (6+5)c{b,c}

13 (8+5)b{b,c}

5d{d}

8c{c}

6b{b}

P(S,k)kS

The minimum cost Hamiltonian circuit is then
given by Min {13 +6, 12+8, 14 +5}
= min {19,20,19} = 19.

Construct an optimal solution from computed
information:

There are two solutions:
(1-4-3-2-1 and 1-2-3-4-1) = 19.
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Analysis of the DP algorithm for TSP:
We now consider the complexity of this algorithm. First, we must count the number of

P(S,k)’s that must be calculated. For each S of cardinality j, there are j possibilities for
k. Number of distinct sets S of size j (cardinality j) not including 1 is C(n-1,j). So, each
S can be any j-subset of {2…n}, and the number of these is C(n,j) = n! / (j!(n-j)!).

Hence the total number of P(S,k)’s to calculate is:
∑0≤ j ≤ n-1 j.C(n-1,j) , where for each j-subset there are (n-1) choices for j.

To calculate this sum, we use the binomial theorem:
(1+x)n-1 = ∑0≤ j ≤ n-1 C(n-1,j) xj

Differentiating both sides gives:
(n-1)(1+x)n-2 = ∑0≤ j ≤ n-1 j.C(n-1,j) xj-1

= ∑0≤ j ≤ n-1 j.C(n-1,j) xj-1

Now, substitute x = 1, and we get
(n-1).2n-2 = ∑0≤ j ≤ n-1 j.C(n-1,j), which is equal to the total the number of P(S,k)’s.

Hence, the total number of P(S,k)’s is (n-1). 2n-2

This is Θ(n.2n-2), so there are an exponential number to calculate.
Calculating one P(S,k) require finding the minimum of at most n quantities. Therefore, the

entire algorithm is Θ(n2.2n-2). The total number of Hamiltonian circuits is (n-1)! The
growth rate of n2.2n-2 is much smaller than that of the factorial function (which we can
prove using Sterling’s formula). That is, this is better than enumerating all (n-1)!
Different tours to find the best one. So, we have traded on exponential growth for a
much smaller exponential growth. The most serious drawback of this DP algorithm
solution is the space needed, which is O(n.2n).
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