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Greedy Design Technique

The Greedy Approach can be described in general terms as
follows.

• The Greedy technique suggests that one can device an
algorithm which works in stages, considering one input
at a time.

• At each stage, a decision is made regarding whether or
not a particular input is an optimal solution.

• This is done by considering the inputs in an order
determined by some selection procedure.

• The selection procedure itself is based on some
optimization measure.
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Greedy Design Technique

The Greedy Approach can be described in general terms
as follows.

• It is clear why such algorithms are called “greedy”: at
every step, the procedure chooses the best morsel it
can swallow, without worrying about the future. It
never changes its mind: once a candidate is included
in the solution, it is there for good; once a candidate
is excluded from the solution, it is never
reconsidered.

• The resulting solution may or may not be optimal,
depending on the problem being solved (in other
words, the greedy method does not work for all
problems.)
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Greedy Design Technique

• For convenience, we formulate Greedy Approach as a
procedure.

Procedure Greedy (A,n)
// A(1:n) contains n inputs //
solution � ∅ // initializes the solution to
empty //
for i �1 to n do

x � Select (A)
If Feasible (solution, x) Then

solution � Union (solution,x)
repeat
return(solution)

End Greedy
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MST (Minimum Spanning Tree):

Problem Instance: a graph G in which each edge has
a non-negative weight (or cost).

Feasible Solution: any spanning tree (a set of (n-1)
edges, and consequently all vertices, containing no
cycles).

Objective Function: c(T) = ∑e∈T c(e), where T is a
spanning tree of G and c(e) is the cost of edge e.

Optimal Solution: the minimum cost spanning tree.

Geedy Design Technique
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function kruskal (G = <N,E>:graph; length: E � ℜ+): set of edges

{initialization}
Sort the edges, E, of G in ascending order of the costs
n � the number of nodes in N
T � ∅ // initializes the solution to empty, will contain the edges of MST //

{greedy loop}
repeat

e � {u,v} //e be the next shortest edge of G in order of cost not yet considered//
ucomp � find(u) // which tells us in which connected node u is to be found//
vcomp � find(v) // which tells us in which connected node u is to be found//

// Check the feasibility, i.e., if T ∪ {e} does not contain a cycle //
if ucomp ≠ vcomp then

union(ucomp,vcomp) //merges two connected components//
T � T ∪ {e}

until T contains n-1 edges
return T

Geedy Design Technique
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Geedy Design Technique
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We can evaluate the execution time of the algorithm as
follows: On a graph with n nodes and E edges, the number
of operations is in
• Θ(ElgE) to sort the edges, which is equivalent to Θ(Elgn)
because n-1 ≤ E ≤ n(n-1)/2;
• Θ(n) to initialize the n disjoint sets
• There are at most 2E find operations and (n-1) merge
operations on a universe containing n elements.
• At worst O(E) for the remaining operations
•We conclude that the total time for the algorithm is in
Θ(ElgE).

Geedy Design Technique
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To prove that Kruskal’s algorithm produces a MST, we
must first enumerate some properties of spanning
trees:

1. Any spanning tree in a graph G of n vertices has n-1
edges.

2. If T is a spanning tree in a graph G, and e is any edge
in G-T, then T+e contains a unique cycle C.

3. The removal of any edge e’ of C from T+e (as in 2
above) produces a spanning tree T’ = T + e – e’.

Geedy Design Technique
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Theorem: The spanning tree T produced by Kruskal’s algorithm is
a MST. Any other MST, T’, can be transformed to T by
successively using the property (3).

Proof: Assume that e1,…en, the costs of the edges, are in increasing
order. That is, c(e1) ≤…≤ c(en).

• Let also ej be the first edge in T but not in T’. Then by property
(2) above, T’ + ej contains a unique cycle C.

• There must be some edge ei of C that is not in T, for otherwise
T would contain the cycle C, which is impossiblity.

• Then T” = T’ + ej – ei is a spanning tree of G by property (3).
The following cost relationship holds:
c(T”) = c(T’) + c(ej) – c(ei)

Geedy Design Technique
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The following cost relationship holds: c(T”) = c(T’) + c(ej) – c(ei)

• c(T”) ≤ c(T’) iff j < i, since the edges are sorted by cost in
increasing order. Up to edge j, every edge in T is in T’.

• If i < j and ei ∉ T, then adding ei to T would have created a
cycle C, all of whose edges precede ej . However, if this were
the case, C would be in T’, which is impossible (since T’ is
assumed to be a MST). Therefore, c(T”) ≤ c(T’), but T’ is a
MST by our original assumption. Thus, c(T”) = c(T’), which
can happen only if c(ej) = c(ei).

• Now, T” must be a MST with one more edge in common with
T than with T’. We can repeat the above process starting with
T” and repeat this as often as necessary (at most n-1 times) to
obtain T, which proves that T is a MST.

Geedy Design Technique
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RKP(Rational Knapsack Problem):
Problem Instance: positive integers w1, …, wn, p1, …,
pn, M (we have n objects, where object i has weight wi
and profit pi, and M is the capacity of the knapsack.)
Feasible Solution: a vector (x1,…xn), where 0≤xi≤1 and
∑0≤i≤n wixi ≤ M. In other words, the knapsack capacity
cannot be exceeded. Note that we allow a fraction of an
object to be placed into the knapsack.
Objective Function: P = ∑0≤i≤n pixi, where P is the profit
associated with (x1,…xn)
Optimal Solution: the maximum profit feasible solution.

Geedy Design Technique



Greedy Design Technique, A.Yazici, Spring 2006 CEng 567
22

Geedy Design Technique

342, 3, 1

35 (highest profit density 1st)2, 1, 3
293, 1, 2

34 (lowest weight 1st)3, 2, 1

301, 3, 2

30 (highest profit 1st)1, 2, 3

ProfitObject Order

2123

45202

310301

DensityWeightProfitItem
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function knapsack (w[1..n],p[1..n]): array [1..n]

{initialization}
for i = 1 to n do x[i] � 0
weight � 0

{greedy loop}
while weight < M do

i � the best remaining object (the objects are sorted in
terms of the profit density)

if weight + w[i] ≥ M then x[i] � 1
weight � weight + w[i]

else x[i] � (M – weight) / w[i]
weight � M

return x

Geedy Design Technique
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Theorem: If objects are selected in order of decreasing pi/wi,
then algorithm knapsack finds an optimal solution.

Proof: Suppose that p1/w1 ≥ p2/w2 ≥…≥ pn/wn. Let X = (x1 …
xn) be solution found by the greedy algorithm.
• If all the xi are equal to 1, this solution is clearly optimal.
• Otherwise, let j be the smallest index such that xj ≠ 1. Looking
at the way the algorithm works, it is clear that xi = 1 for 1 ≤ i < j,
xi = 0 for j < i ≤ n, and that 0≤ xi <1 and ∑1≤i≤n wixi = M and the
value of the solution X be P (X) = ∑1≤i≤n pixi.
• Now let Y = (y1 … yn) be an optimal solution. Since Y is
feasible, ∑0≤i≤n wiyi = M and the value of the solution Y be P(Y)
= ∑1≤i≤n piyi.
• Let k be the least index such that yk ≠ xk. Clearly, such a k
must exist. It also follows that yk < xk. To see this, consider the
three possibilities: k < j, k=j, or k >j.

Geedy Design Technique
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1. When k < j, xk = 1. But yk ≠ xk and so yk < xk.
2. When k = j, then since ∑1≤i≤n wiyi = M and yi = xi for 1 ≤ i <

j, it follows that either yk<xk or ∑1≤i≤n wiyi > M.
3. When k > j, then ∑1≤i≤n wiyi > M which is not possible.

• Now suppose we increase yk to xk and decrease as many of
(yk+1, …, yn) as is necessary so that the total capacity used is
still M. This results in a new solution Z = (z1, …, zn) with zi
= xi , 1≤ i ≤ k and ∑k<i≤n wi(yi-zi) = wk(zk-yk). Then for Z we
have

• ∑1≤i≤n pizi = ∑1≤i≤n piyi + (zk-yk) wkpk/wk - ∑k<i≤n (yi-zi)
wi(pj/wj)
≥ ∑1≤i≤n piyi + [(zk-yk) wk - ∑k<i≤n (yi-zi)wi] pk/wk
= ∑1≤i≤n piyi

Geedy Design Technique
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• If ∑1≤i≤n pizi > ∑1≤i≤n piyi then Y could not have been an
optimal solution. If these sums are equal then either Z = X
and X is optimal or Z ≠ X. In this latter case, repeated use of
the above argument will either show that Y is not optimal or
will transform Y into X, showing that X too is optimal.

Geedy Design Technique
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Example (The Task Sequencing Problem):
Problem Instance: a set of T of n tasks to be performed. For each

task t ∈T, there is a length l(t), a weight (or penalty) w(t) and a
deadline d(t), all entries are positive integers.

Feasible Solution: any schedule of a subset T1 of T, in which at
most one task is executed at a time, and such that each scheduled
task finishes before its deadline. Scheduling function, s(t)
satisfies the following properties:

if s(t) < s(t’), then s(t) +l(t) ≤ s(t’), ∀t,t’ ∈ T1
(each task terminates before any other one begins)

s(t) + l(t) ≤ d(t) ∀t ∈ T1
(each task terminates before its deadline)
Objective Function: W = ∑t∈T-T1 w(t) = the sum of weights of

unscheduled (tardy) tasks, i.e., the tardy task weight (T- T1 are
the ones not able to schedule).

Optimal Solution: the schedule with the minimum tardy task weight.

Geedy Design Technique
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Example (The Task Sequencing Problem):

A pseudo-code description of the algorithm is as follows:

Sort the tasks so that w1 ≥ w2 ≥…≥ wn
T1 � {}
For i � 1 to n do

If T1 ∪ {ti} is feasible then
T1 � T1 ∪{ti}

W = ∑t∈T-T1 w(t)

Geedy Design Technique
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Example: T = {t1, t2, t3, t4, t5, t6}
w1= 7, w2 = 5, w3 = 4, w4= 3, w5 = 2, w6 = 1,
d1= 3, d2 = 2, d3 = 1, d4= 2, d5 = 4, d6 = 3,
All lengths = 1.

not feasibleT1 � { t1 , t2 , t3 , t5 , t6}

{t3, t2, t1, t5}T1 � { t1 , t2 , t3 , t5}

not feasibleT1 � { t1 , t2 , t3 , t4}

{t3, t2, t1}T1 � { t1 , t2 , t3}

{t3, t2, t1}T1 � { t1 , t2}

{t2, t1}T1 � { t1}

{t1}T1 � {}

The schedule (based on the
decreasing order of deadlines)

Tasks considered (in increasing order of weights)

• Since t4 and t3 have the same deadlines, 2, we could not add
task t4 to the list, {t3, t2, t1, t4}
• Is not feasible. Similarly, t6 and t1 have the same deadlines, 3.
Therefore, W = w4 + w6 = 4.
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Theorem: If all tasks have length = 1, then the greedy algorithm
determines the minimum tardy task weight.
Proof: We give only an outline of the proof. Let T(G) denote
the non-tardy tasks in the schedule found by the greedy
algorithm and T(O) be the non-tardy tasks in an optimal
solution. Also, let s(G) and s(O) denote feasible schedules for
the tasks in T(G) and T(O), respectively. We also assume that
s(G) schedules the tasks in T(G) in increasing order by deadline,
so s(G) is feasible. The proof proceeds along the same lines as
all previous proofs for greedy algorithms. That is, s(O) is
transformed into another optimal schedule, s(O’), which has one
more task in common with s(G) than does s(O). This process is
repeated as often as necessary and eventually it is shown that
s(G) = s(O).

Geedy Design Technique
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Example (Multiprocessor Scheduling)):
Problem Instance: a set of T of n tasks. For each task t∈T,
there is a length l(t), a positive integer. Also given a positive
integer m, the number of available processors.
Feasible Solution: a schedule for all the tasks, such that each
processor executes only one task at a time. All m processors are
identical. Also, each task must be scheduled on only one
processor without interruption.
Objective Function: the time when the last task finishes
executing (this is the finishing time, denoted by FT)
Optimal Solution: the feasible schedule with the minimum
finishing time.
• This problem is an NP-Complete problem, so we do not expect to find a
polynomial time algorithm to solve it. A greedy approach does not do too
badly, however. It can be shown that it always produces a schedule that is at
most 1/3 longer than optimal.

Geedy Design Technique
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Sort tasks so that 11 ≥ 12 ≥ … ≥ ln
For i = 1 to m do

T(i) = 0; // T(i) keeps track of when processor i becomes free//
For j = 1 to n do
Begin

Mini = 1;
For i = 2 to m do
If T(i) < T (mini) then

Mini = i; // this finds the next free processor//
Assign tj to processor mini at time T(mini)
T(mini) = T(mini) + lj;

End
FT = max {T(1), T(2),…,T(m)}

--
The complexity of this algorithm is Θ (n.m).

Geedy Design Technique
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Example: Let us assume 7 jobs to be scheduled and their lengths
are 5,5,4,4,3,3,3 and There are 3 processors available.
The greedy schedule is as follows:

Geedy Design Technique

5 3 3

5 3

4 4

Processor 1

Processor 2

Processor 3

FT = 11
5 4

5 4

3 3 3

Optimum Soln: FT = 9

The relative error is
2/9. It can be
shown that the
maximum relative
error is 1/3–1/(3m).
In the case of m =
3, this is 1/3 – 1/9 =
2/9.
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Example (Compressing Data): Hoffman Coding
Problem Instance: a code, C, consists of a set of n characters.
For each character c∈C, there is a frequency f(c), a positive
integer. Also there is a priority queue Q, keyed on f, is used to
identify the two least-frequent objects to merge together.
Feasible Solution: a tree, T, for n characters, each character has
a codeword representing the frequency of a character, c∈C, is
the sum of the frequencies of all characters in the code.
Objective Function: the total frequencies = f(T) = ∑f∈T f(ci),
where 1≤i≤n, T is a tree of C and f(c) is the frequency of c.
Optimal Solution: the minimum cost tree representing the
Hoffman code.

Geedy Design Technique
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Hoffman invented a greedy algorithm that constructs an optimal prefix code
called a Huffman code. The algorithm builds the tree T corresponding to the
optimal code in a bottom up manner. It begins with a set of |C| leaves and
performs a sequence of |C| + 1 “merging” operations to create the final tree.

HUFFMAN ( C )
n � |C|
Q � C
For i � 1 to n-1

do z � Allocate-Node()
x � left[z] � Extract-min (Q)
y � right[z] � Extract-min (Q)
f[z] � f[x] + f[y]
Insert (Q,z)

Return Extract-Min (Q)

Geedy Design Technique
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f:5 e:9 c:12 d:16 a:45b:13

c:12 d:16 a:45b:13

f:5

14

e:9

10

d:16 a:45

f:5

14

e:9 c:12

25

b:13

0 101

1. step:

2. step:

3.step:
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a:45

f:5

14

e:9

30

d:16c:12

25

b:13

55
a:45

f:5

14

e:9

30

d:16c:12

25

b:13

0

0

10 10

1

1

4. step:

5.step:
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6.step:

55a:45

f:5

14

e:9

30

d:16c:12

25

b:13

100

0

10

1010

1

10

110011011111001010Variable-length codeword
5916121345Frequency (in thousands)

fedcba

This code requires 224,000 bits = ((45*1 + 13*3 + 12 *3 + 16*3 + 9*4 +
5*4) * 1000), which is an optimal character code for this file.
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Complexity analysis:
• The analysis of the running time of Huffman’s algorithm
assumes that Q is implemented as a binary heap.

• For a set C of n characters, the initialization of Q can be
performed in O(n) time using Build-heap procedure.

• The for loop is executed exactly n-1 times, and since each heap
operation requires time O(lgn), the loop contributes O(nlgn) to
the running time.

• Therefore, the total running time of Huffman’s algorithm on a
set of n characters is O(nlgn).

Geedy Design Technique
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Greedy Design technique does not guarantee the best
solutions for all the problems that are applicable.
Threrefore a proof must come with a solution.
• For some problems it finds the optimum soln.
• For some problems it is applicable to some specific
instances of the problem.
• For some problems it finds a good solution, as an
approximation algorithm.
• When it is applicable usually the computational
complexity of the solution is quite good.

CONCLUSIONS
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