
Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
1

Lower and Upper Bound Theory

Adnan YAZICI
Dept. of Computer Engineering

Middle East Technical Univ.
Ankara - TURKEY

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
2

Lower and Upper Bound Theory

How fast can we sort?
• Most of the sorting algorithms are comparison

sorts: only use comparisons to determine the
relative order of elements.
• E.g., insertion sort, merge sort, quicksort,
heapsort.

• The best worst-case running time that we’ve
seen for comparison sorting is O(nlgn) .
Is O(nlgn) the best we can do?

Lower-Bound Theory can help us answer this question.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
3

Lower and Upper Bound Theory
• Lower Bound, L(n), is a property of the specific

problem, i.e., sorting problem, MST, matrix
multiplication, not of any particular algorithm
solving that problem.

• Lower bound theory says that no algorithm can
do the job in fewer than L(n) time units for
arbitrary inputs, i.e., that every comparison-
based sorting algorithm must take at least L(n)
time in the worst case.

• L(n) is the minimum over all possible
algorithms, of the maximum complexity.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
4

Lower and Upper Bound Theory
• Upper bound theory says that for any arbitrary inputs,

we can always sort in time at most U(n). How long it
would take to solve a problem using one of the known
algorithms with worst-case input gives us a upper
bound.

• Improving an upper bound means finding an algorithm
with better worst-case performance.

• U(n) is the minimum over all known algorithms, of the
maximum complexity.

• Both upper and lower bounds are minima over the
maximum complexity of inputs of size n.

• The ultimate goal is to make these two functions
coincide. When this is done, the optimal algorithm will
have L(n) = U(n).

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
5

Lower and Upper Bound Theory
There are few techniques for finding lower bounds.

Trivial Lower Bounds: For many problems it is possible to easily
observe that a lower bound identical to n exists, where n is the
number of inputs (or possibly outputs) to the problem.

• The method consists of simply counting the number of inputs
that must be examined and the number of outputs that must be
produced, and

• note that any algorithm must, at least, read its inputs and write
its outputs.

Example-1: Multiplication of a pair of nxn matrices
• requires that 2n2 inputs be examined and
• n2 outputs be computed, and
• the lower bound for this matrix multiplication problem is

therefore Ω(n2).

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
6

Lower and Upper Bound Theory

Example-2: Finding maximum of unordered array
requires examining each input so it is Ω(n).

• A simple counting arguments shows that any
comparison-based algorithm for finding the maximum
value of an element in a list of size n must perform at
least n-1 comparisons for any input.

• Other Examples?

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
7

Lower and Upper Bound Theory
Information Theory: The information theory

method establishing lower bounds by computing
the limitations on information gained by a basic
operation and then showing how much
information is required before a given problem is
solved.

• This is used to show that any possible algorithm
for solving a problem must do some minimal
amount of work.

• The most useful principle of this kind is that the
outcome of a comparison between two items
contains one bit of information.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
8

Lower and Upper Bound Theory

Example-1: For the problem of searching an
ordered list with n elements for the position
of a particular item,

Proof: There are n possible outcomes, input
strings

• In this case lgn comparisons are necessary,
• So, unique identification of an index in the

list requires lgn bits.
• Therefore, lgn bits are necessary to specify

one of the m possibilities.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
9

Lower and Upper Bound Theory

<a,b>

<a,b,c,d>

<c,d>

≤≤≤≤

>

d

>

2 bits of information
is necessary.

c

≤≤≤≤

ba

≤≤≤≤ >

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
10

Lower and Upper Bound Theory

Example-2: For the problem of comparison-based
sorting:

• If we only know that the input is orderable then
there are n! possible outcomes – each of the n!
permutations of n things.

• Since, within the comparison-swap model, we
can only use comparisons to derive information

• Then, from information theory, lgn! is a lower
bound on the number of comparisons necessary
in the worst-case to sort n things.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
11

Lower and Upper Bound Theory
Proof: For the problem of comparison-based sorting,
• The result of a given comparison between two list of

elements yields a single bit of information (0=False, 1 =
True).

• Each of the n! permutations of {1, 2, …, n} has to be
distinguished by the correct algorithm.

• Thus, a comparison-based algorithm must perform
enough comparisons to produce n! cumulative pieces of
information.

• Since each comparison only yields one bit of
information, the question is what the minimum number
of bits of information needed to allow n! different
outcomes is, which is lgn! bits.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
12

Lower and Upper Bound Theory

>

<1,2,3>

<1,3,2>

<2,1,3>

<3,1,2> <2,3,1> <3,2,1>

≤≤≤≤

≤≤≤≤

≤≤≤≤

≤≤≤≤

≤≤≤≤

>

>>

>

input

111

000

Figure: There are 3! = 6 possible permutations of the n
input elements, so lgn! bits are required for lgn!
comparisons for sorting n things, which is Θ(nlgn).

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
13

Lower and Upper Bound Theory

How fast lgn! grow? We can bind n! from above by
overestimating every term of the product, and bind it
below by underestimating the first n/2 terms.

n/2 x n/2 x …x n/2 x…x 2 x 1
≤ n! = n x (n-1) x …x 2 x1

≤ n x n x …x n
(n/2)n/2 ≤ n! ≤ nn

½(nlgn-n) ≤ lgn! ≤ nlgn

This follows that lgn!∈ Θ(nlgn)

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
14

Decision-tree model

A decision tree can model the execution of any
comparison based problem.

• One tree for each input size n.
• View the algorithm as splitting whenever it compares

two elements.
• The tree contains the comparisons along all possible

instruction traces.
• The running time of the algorithm = the length of the

path taken.
• Worst-case running time = the height of tree.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
15

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
16

Decision-tree model

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
17

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
18

Decision-tree model for Searching

Figure: A comparison tree for a linear search
algorithm

x:A(1)

x:A(2)

x:A(n)

Failure

Failure

Failure Failure

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
19

Decision-tree model for Searching

Figure: A Comparison tree for a search algorithm

x:A(lg(n+1)/2)

x:A(lg(3n+1)/4)x:A(lg(n+1)/4)

….

x:A(1) …. x:A(lg(n+1)/4-1) x:A(lg(n+1)/4 +1) x:A(n)

Failure FailureFailureFailureFailureFailure FailureFailure

…

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
20

Example: (Lower bound for comparison-based
searching on ordered input):
Let A(1:n), n ≥ 1, contain n distinct elements,
ordered so that A(1) < A(2) <…< A(n). Let
FIND(n) be minimum number of comparisons
needed, in the worst case, by any comparison based
algorithm to recognize if x ∈A(1:n). Then FIND(n)
≥ lg(n+1).

Decision-tree model

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
21

Decision-tree model
Proof: Let us consider all possible comparison trees which model
algorithms to solve the searching problem.
• FIND(n) is bounded below by the distance of the longest path from
the root to a leaf in such a tree.
• There must be n internal nodes in all of these trees corresponding
to the n possible successful occurrences of x in A.
• If all internal nodes of binary tree are at levels less than or equal to
k (every height k-rooted binary tree has at most 2k+1 – 1 nodes), then
there are at most 2k – 1 internal nodes.

Thus, n ≤ 2k –1 and FIND(n) = k ≥ log (n+1).
• Because every leaf in a valid decision tree must be reachable, the
worst-case number of comparisons done by such a tree is the number
of nodes in the longest path from the root to a leaf in the binary tree
consisting of the comparison nodes.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
22

Oracles and Adversary Arguments

• Another technique for obtaining lower bounds consists of
making use of an “oracle.”
• Given some model of computation such as comparison
trees, the oracle tells us the outcome of each comparison.
• In order to derive a good lower bound, the oracle tries its
best to cause the algorithm to work as hard as it might.
• It does this by choosing as the outcome of the next test,
the result which causes the most work to be required to
determine the final answer.
• And by keeping track of the work that is done, a worst-
case lower bound for the problem can be derived.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
23

Oracles and Adversary Arguments
Example: (Merging Problem) Given the sets A(1:m) and B(1:n),
where the items in A and in B are sorted. Investigate lower bounds
for algorithms merging these two sets to give a single sorted set.
•Assume that all of the m+n elements are distinct and A(1) < A(2) <
…< A(m) and B(1) < B(2) < …< B(n).
•Elementary combinatorics tells us that there are C((m+n), n)) ways
that the A’s and B’s may merge together while still preserving the
ordering within A and B.
•Thus, if we use comparison trees as our model for merging
algorithms, then there will be C((m+n), n)) external nodes and
therefore at least log C((m+n), m) comparisons are required by
any comparison-based merging algorithm.
•If we let MERGE(m,n) be the minimum number of comparisons
need to merge m items with n items then we have the inequality
log C((m+n), m) ≤ MERGE(m,n) ≤ m+n-1.
•The upper bound and lower bound can get arbitrarily far apart as m
gets much smaller than n.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
24

Problem Reduction

Another elegant means of proving a lower bound on a
problem is to show that an algorithm for solving that a
problem along with a transformation on problem
instances, could be used to construct an algorithm to
solve another problem for which a lower bound is
known.

Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
25

Problem Reduction
Example: An algorithm for finding the Euclidean minimum
spanning tree of n points in the plane can be used to solve the
element uniqueness problem, and must therefore take time Ω(nlgn).
The reduction is quite simple:

• Suppose we want to determine whether any two of the numbers
x1,x2,…,xn are equal.
• We can solve this problem by giving any Euclidean MST
algorithm the points (x1,0), (x2,0),…,(xn,0).
• The two closest points are known to be joined by one of the
(n-1) spanning-tree edges,
• So we can scan these edges in linear time, determine if any
edge has zero length.
• Such an edge exists iff two of xi are equal.
• Therefore, if the spanning tree algorithm could operate in less
than O(nlgn) time, then the element uniqueness problem could be
solved in less than O(nlgn) time too.

	Lower and Upper Bound Theory ��A...
	Lower and Upper Bound Theory
	Lower and Upper Bound Theory
	Lower Bound, L(n), is a propert...
	Lower bound theory says that no ...
	L(n) is the minimum over all pos...

	Lower and Upper Bound Theory
	Upper bound theory says that for...
	Improving an upper bound means f...
	U(n) is the minimum over all kno...
	Both upper and lower bounds are ...
	The ultimate goal is to make the...

	Lower and Upper Bound Theory
	Lower and Upper Bound Theory
	Lower and Upper Bound Theory
	Lower and Upper Bound Theory
	Lower and Upper Bound Theory
	Lower and Upper Bound Theory
	Lower and Upper Bound Theory
	Lower and Upper Bound Theory
	Lower and Upper Bound Theory
	Decision-tree model
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	 Another technique for obtaining...
	 Given some model of computation...
	 In order to derive a good lower...
	 It does this by choosing as the...
	 And by keeping track of the wor...

	Slide 23
	Slide 24
	Slide 25

