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Lower and Upper Bound Theory

How fast can we sort?
• Most of the sorting algorithms are comparison

sorts: only use comparisons to determine the
relative order of elements.
• E.g., insertion sort, merge sort, quicksort,
heapsort.

• The best worst-case running time that we’ve
seen for comparison sorting is O(nlgn) .
Is O(nlgn) the best we can do?

Lower-Bound Theory can help us answer this question.
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Lower and Upper Bound Theory
• Lower Bound, L(n), is a property of the specific

problem, i.e., sorting problem, MST, matrix
multiplication, not of any particular algorithm
solving that problem.

• Lower bound theory says that no algorithm can
do the job in fewer than L(n) time units for
arbitrary inputs, i.e., that every comparison-
based sorting algorithm must take at least L(n)
time in the worst case.

• L(n) is the minimum over all possible
algorithms, of the maximum complexity.
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Lower and Upper Bound Theory
• Upper bound theory says that for any arbitrary inputs,

we can always sort in time at most U(n). How long it
would take to solve a problem using one of the known
algorithms with worst-case input gives us a upper
bound.

• Improving an upper bound means finding an algorithm
with better worst-case performance.

• U(n) is the minimum over all known algorithms, of the
maximum complexity.

• Both upper and lower bounds are minima over the
maximum complexity of inputs of size n.

• The ultimate goal is to make these two functions
coincide. When this is done, the optimal algorithm will
have L(n) = U(n).
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Lower and Upper Bound Theory
There are few techniques for finding lower bounds.

Trivial Lower Bounds: For many problems it is possible to easily
observe that a lower bound identical to n exists, where n is the
number of inputs (or possibly outputs) to the problem.

• The method consists of simply counting the number of inputs
that must be examined and the number of outputs that must be
produced, and

• note that any algorithm must, at least, read its inputs and write
its outputs.

Example-1: Multiplication of a pair of nxn matrices
• requires that 2n2 inputs be examined and
• n2 outputs be computed, and
• the lower bound for this matrix multiplication problem is

therefore Ω(n2).



Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
6

Lower and Upper Bound Theory

Example-2: Finding maximum of unordered array
requires examining each input so it is Ω(n).

• A simple counting arguments shows that any
comparison-based algorithm for finding the maximum
value of an element in a list of size n must perform at
least n-1 comparisons for any input.

• Other Examples?
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Lower and Upper Bound Theory
Information Theory: The information theory

method establishing lower bounds by computing
the limitations on information gained by a basic
operation and then showing how much
information is required before a given problem is
solved.

• This is used to show that any possible algorithm
for solving a problem must do some minimal
amount of work.

• The most useful principle of this kind is that the
outcome of a comparison between two items
contains one bit of information.
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Lower and Upper Bound Theory

Example-1: For the problem of searching an
ordered list with n elements for the position
of a particular item,

Proof: There are n possible outcomes, input
strings

• In this case lgn comparisons are necessary,
• So, unique identification of an index in the

list requires lgn bits.
• Therefore, lgn bits are necessary to specify

one of the m possibilities.
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Lower and Upper Bound Theory
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Lower and Upper Bound Theory

Example-2: For the problem of comparison-based
sorting:

• If we only know that the input is orderable then
there are n! possible outcomes – each of the n!
permutations of n things.

• Since, within the comparison-swap model, we
can only use comparisons to derive information

• Then, from information theory, lgn! is a lower
bound on the number of comparisons necessary
in the worst-case to sort n things.
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Lower and Upper Bound Theory
Proof: For the problem of comparison-based sorting,
• The result of a given comparison between two list of

elements yields a single bit of information (0=False, 1 =
True).

• Each of the n! permutations of {1, 2, …, n} has to be
distinguished by the correct algorithm.

• Thus, a comparison-based algorithm must perform
enough comparisons to produce n! cumulative pieces of
information.

• Since each comparison only yields one bit of
information, the question is what the minimum number
of bits of information needed to allow n! different
outcomes is, which is lgn! bits.
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Lower and Upper Bound Theory
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Figure: There are 3! = 6 possible permutations of the n
input elements, so lgn! bits are required for lgn!
comparisons for sorting n things, which is Θ(nlgn).
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Lower and Upper Bound Theory

How fast lgn! grow? We can bind n! from above by
overestimating every term of the product, and bind it
below by underestimating the first n/2 terms.

n/2 x n/2 x …x n/2 x…x 2 x 1
≤ n! = n x (n-1) x …x 2 x1

≤ n x n x …x n
(n/2)n/2 ≤ n! ≤ nn

½(nlgn-n) ≤ lgn! ≤ nlgn

This follows that lgn!∈ Θ(nlgn)



Lower and Upper Bound Theory, A.Yazici, Spring 2006 CEng 567
14

Decision-tree model

A decision tree can model the execution of any
comparison based problem.

• One tree for each input size n.
• View the algorithm as splitting whenever it compares

two elements.
• The tree contains the comparisons along all possible

instruction traces.
• The running time of the algorithm = the length of the

path taken.
• Worst-case running time = the height of tree.
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Decision-tree model
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Decision-tree model for Searching

Figure: A comparison tree for a linear search
algorithm
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Decision-tree model for Searching

Figure: A Comparison tree for a search algorithm

x:A(lg(n+1)/2)
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Example: (Lower bound for comparison-based
searching on ordered input):
Let A(1:n), n ≥ 1, contain n distinct elements,
ordered so that A(1) < A(2) <…< A(n). Let
FIND(n) be minimum number of comparisons
needed, in the worst case, by any comparison based
algorithm to recognize if x ∈A(1:n). Then FIND(n)
≥ lg(n+1).

Decision-tree model
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Decision-tree model
Proof: Let us consider all possible comparison trees which model
algorithms to solve the searching problem.
• FIND(n) is bounded below by the distance of the longest path from
the root to a leaf in such a tree.
• There must be n internal nodes in all of these trees corresponding
to the n possible successful occurrences of x in A.
• If all internal nodes of binary tree are at levels less than or equal to
k (every height k-rooted binary tree has at most 2k+1 – 1 nodes), then
there are at most 2k – 1 internal nodes.

Thus, n ≤ 2k –1 and FIND(n) = k ≥ log (n+1).
• Because every leaf in a valid decision tree must be reachable, the
worst-case number of comparisons done by such a tree is the number
of nodes in the longest path from the root to a leaf in the binary tree
consisting of the comparison nodes.
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Oracles and Adversary Arguments

• Another technique for obtaining lower bounds consists of
making use of an “oracle.”
• Given some model of computation such as comparison
trees, the oracle tells us the outcome of each comparison.
• In order to derive a good lower bound, the oracle tries its
best to cause the algorithm to work as hard as it might.
• It does this by choosing as the outcome of the next test,
the result which causes the most work to be required to
determine the final answer.
• And by keeping track of the work that is done, a worst-
case lower bound for the problem can be derived.
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Oracles and Adversary Arguments
Example: (Merging Problem) Given the sets A(1:m) and B(1:n),
where the items in A and in B are sorted. Investigate lower bounds
for algorithms merging these two sets to give a single sorted set.
•Assume that all of the m+n elements are distinct and A(1) < A(2) <
…< A(m) and B(1) < B(2) < …< B(n).
•Elementary combinatorics tells us that there are C((m+n), n)) ways
that the A’s and B’s may merge together while still preserving the
ordering within A and B.
•Thus, if we use comparison trees as our model for merging
algorithms, then there will be C((m+n), n)) external nodes and
therefore at least log C((m+n), m) comparisons are required by
any comparison-based merging algorithm.
•If we let MERGE(m,n) be the minimum number of comparisons
need to merge m items with n items then we have the inequality
log C((m+n), m) ≤ MERGE(m,n) ≤ m+n-1.
•The upper bound and lower bound can get arbitrarily far apart as m
gets much smaller than n.
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Problem Reduction

Another elegant means of proving a lower bound on a
problem is to show that an algorithm for solving that a
problem along with a transformation on problem
instances, could be used to construct an algorithm to
solve another problem for which a lower bound is
known.
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Problem Reduction
Example: An algorithm for finding the Euclidean minimum
spanning tree of n points in the plane can be used to solve the
element uniqueness problem, and must therefore take time Ω(nlgn).
The reduction is quite simple:

• Suppose we want to determine whether any two of the numbers
x1,x2,…,xn are equal.
• We can solve this problem by giving any Euclidean MST
algorithm the points (x1,0), (x2,0),…,(xn,0).
• The two closest points are known to be joined by one of the
(n-1) spanning-tree edges,
• So we can scan these edges in linear time, determine if any
edge has zero length.
• Such an edge exists iff two of xi are equal.
• Therefore, if the spanning tree algorithm could operate in less
than O(nlgn) time, then the element uniqueness problem could be
solved in less than O(nlgn) time too.
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