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Abstract. Symmetry is a key structural cue in computer graphics, guid-
ing many shape analysis tasks. We propose a novel method to extract in-
trinsic reflective symmetry axis curves—curves that split a mesh into two
intrinsically symmetric, near-equal regions. Our approach begins with
geodesic-based point sampling, followed by point matching via spec-
tral histograms computed along geodesic paths to candidate bisector
regions. These histograms are compared using normalized optimal trans-
port. To improve robustness, we aggregate votes from multiple paths and
midpoints, selecting the best bisector region and refining the axis iter-
atively. Our method outperforms state-of-the-art techniques on SCAPE
and TOSCA, and produces strong results on the diverse Princeton dataset.
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1 Introduction

Extracting intrinsic symmetry axes aids pose-invariant matching [12], remesh-
ing [20], segmentation, and modeling. It supports mirrored designs, skeletons,
UVs, and speeds up rendering and compression via structural reuse. We address
this challenging task amid irregular geometry and shape variation.

We propose a multistage method for extracting intrinsic reflective symme-
try axis curves on polygonal meshes, focusing on 3D. The pipeline begins with
robust geodesic-based sampling, followed by candidate matching using spectral
signatures. We construct bisector regions and refine the symmetry axis through
optimal transport-based histogram comparisons. This layered approach handles
geometric noise, structural variability, and mesh irregularities effectively.

While designed for complete meshes, our algorithm tolerates minor topolog-
ical variations and limited partiality (e.g., missing limbs). It performs best on
complete, well-structured meshes. Code and executables of our research can be
found at [30].

The contributions of this paper are as follows:

— Accuracy: For each matched pair, we construct a bisector region and iden-
tify the curve that minimizes the geodesic distance to the pair’s midpoint, se-
lecting it as the candidate symmetry axis. We then iteratively refine both the
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correspondence set and the axis curve itself, resulting in a robust and precise
extraction of the intrinsic symmetry axis. Our method achieves state-of-the-
art performance in partitioning meshes into symmetric regions, as evidenced
by superior area ratio results.

— Efficiency: We achieve point matching via Optimal Transport with minimal
overhead.

2 Related Work

Symmetry detection has shifted from extrinsic planes to intrinsic spectral and
functional-map methods for greater robustness. We extend this progress with
a compact intrinsic approach for reflective axis extraction that addresses prior
limitations.

2.1 Symmetry Detection and Shape Correspondence

Symmetry detection is a mature field in image processing and digital geometry
processing, featuring diverse methodologies; surveys such as [27] and [15] offer
comprehensive comparative evaluations on this topic.

Recent methods extract symmetry planes for extrinsically symmetric shapes.
He et al. [8] use PCA-based vertex distances with iterative refinement, while [13]
fits planes via curvature-guided sampling. Nagar et al. [16] adapt [29] for point
clouds, and [18] refines a randomly initialized plane descriptor-free. In contrast,
our method targets intrinsic symmetry using geodesic distances .

Hierarchical methods decompose 3D shapes via structural symmetries [31],
while intrinsic ones use Mobius transforms for symmetry-aware sampling [11],
[9]. Eigenfunction-based techniques match regions via Laplace—Beltrami spec-
tra [24], and coarse-to-fine pipelines combine isometric alignment with flip cor-
rection [26]. Inspired by [19], we replace sign sequences with spectral histograms
and Optimal Transport in Algorithm 1. Embedding-based methods [34] reduce
flips to rotations, and [23] improves robustness via orientation-penalizing regu-
larization.

2.2 Symmetry Axis Curves

Intrinsic symmetry-axis extraction has been studied in [22], which surveys de-
tection methods. [28] addresses noisy meshes via statistical voting. [33] uses
bisector-based selection with scalar field refinement, extended by [32] through
multi-scale clustering of scale-aware geodesic profiles.

Deep learning has advanced symmetry detection, with early works [7],[10]
targeting extrinsic symmetries. [21] recasts intrinsic symmetry as a functional
map task for real-time, robust results, while [5] learns orientation-aware features
to resolve flips and improve consistency.

Our method builds on shape analysis advances, using the Heat Kernel Sig-
nature (HKS) [29] for robust, multiscale intrinsic descriptors and geodesic-based
sampling via average and minimum distances [9].
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3 Method for Symmetry Axis Curve Generation

3.1 Overview

We present our method, highlighting key innovations and improvements over
prior work. An overview of the full pipeline is shown in Figure 1.
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Fig. 1: Overview of the algorithm.
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We sample symmetry-aware points using AGD and MGD [9], this strategy
increases the chance that for every sampled point, we also sample its symmet-
rical counterpart, yielding reliable initialization pairs. Correspondences rely on
HKS [29], normalized by geodesic distance from midpoints. From bisector re-
gions, we trace paths, bin HKS values, and compare histograms via log-scaled
Optimal Transport [14]. A multi-pass scheme selects regions minimizing inverse-
weighted midpoint-to-boundary distance (Fig. 2). Overextended bisectors are
pruned, same-side pairs removed, and the refined axis reused to update or seed
new pairs.

3.2 Symmetry-Aware Point Sampling

We sample using Average Geodesic Distance
(AGD), summing distances from each vertex to all
others. After 1-ring smoothing, local extrema are
selected (Fig. 3-a). This extends to any k-ring [9].

We compute Minimum Geodesic Distance
(MGD) to find closest points to each AGD sam-
ple—treated as bisector centers—and apply a dis-
tance threshold to prevent clustering. Fig. 3-b—d
shows the iterative MGD process.

-

bisector
region
generation

3.3 Candidate Point Matching

Comparing Intrinsic Properties Candidate
pairs from AGD/MGD sampling are filtered by
HKS similarity and midpoint distance (Algo-
rithm 1) to retain only well-placed, similar pairs.
Nearby pairs are discarded to avoid oversized bi-
sector regions and reduce computation.

Flg 2: Sequence of symmetry-
curve generation and pruning; col-
ored spheres mark corresponding
pairs, linked by black lines.
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(@) (b) @ (a) (b)
Flg 3: (a) AGD values from low (blue) to high Flg 4: Red spheres show sampled
(red) and samples (spheres) based on AGD local points. Blue ones mark the bisec-
extrema. (b, ¢, d) Iterative sampling that inserts tor pair defining the yellow bisector
new MGD samples as we go from (b) to (d). (red/green sides). Alternating bands

indicate histogram bins.

Algorithm 1 Early Candidate Matching Test

1: procedure CHECKPOINTSFEASIBLE(mesh, p1, p2)
isHks + CHECKHKS(mesh, pl, p2)

3 isDistance <~ CHECKDISTANCERATIO(mesh, pl, p2)

4 return isHks A isDistance

5: end procedure

Pairing with Histogram For valid pairs, we compute bisector regions, sam-
ple normalized HKS histograms along geodesics to the boundary (Fig. 4), and
compare them via optimal transport—lower costs imply stronger matches.

Histogram For HKS Histogram For HKS
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Flg. 5: (a) Area influenced by the right blue ’ Zox EZ?
sphere on the shinbone; (b) same for the left 02 . “:0:2
blue sphere. Alternating blue and gray indicate foss e
histogram bins. (c) HKS histograms from (a—b) 12345 12345 12845 12345
show strong similarity, supporting their corre- distance distance distance distance
(c1) (c2) (c3) (c4)
spondence.

Flg 6: (a) Yellow bisector with red (samples)
and blue (selected pairs) spheres. (b1-b2) His-
tograms from blue points to the closest bisec-
tor boundary; (b3-b4) to the farthest. (cl-c4)
Corresponding HKS histograms. X-axis: binned
geodesic distances, with alternating colors mark-
ing successive bins.

To ensure uniform sampling, we normalize geodesics by regional bounds and
trace N paths per pair (Figs. 5, 6). Higher N improves accuracy at cost. For
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each path ~y, we gather points ¢ within threshold F, i.e., min,¢, dist,(q, ) < F,
then bin their normalized HKS values by endpoint distance to form the final
histogram.

Comparing histograms We evaluated L2 norm, KL divergence, Chi-Square,
EMD, and KS metrics for histogram comparison, but found Optimal Transport
(OT) [4] to yield the most accurate and robust results. We compare normalized
HKS histograms along bisector-boundary geodesics using entropy-regularized
Optimal Transport (OT), solved via the Sinkhorn algorithm [4], for fast and
stable correspondence scoring.

We use OT cost to score similarity—lower values reflect stronger intrinsic
matches. Unlike Ly or KL, OT captures subtle shifts; its log variant [14] improves
robustness. Top-ranked pairs seed symmetry extraction; same-side and residual
pairs are pruned.

3.4 Generating Symmetry Axis Curve

We extract the symmetry axis by inversely weighting midpoint-to-bisector geodesics,
then prune outliers for a smooth, meaningful curve.

Selecting Best Region We select the bisector with the lowest inverse-weighted
midpoint-to-boundary sum (Fig. 7-a—d) and prune outliers. Algorithm 2 pri-
oritizes short, central matches with normalization. Area-weighting showed no
benefit.

(a) (b) (c) (d) (e)

Flg 7: (a-d) Example bisector regions (yellow) on one model: (a) and (d) are valid; others are
flawed. Yellow indicates the bisector, red and green mark opposing sides. (e) Initial bisector (left),
after pruning invalid matches (center), and final refined symmetry axis (right).

Pruning and Iterations Bisectors from overly close pairs often overflow (Fig. 9-
a). We address this using our pruning routine (Fig. 9-b).

The algorithm computes each pair’s geodesic midpoint, splits the mesh along
its normal, selects the farthest bisector point as the front, and ray-casts backward
to find the rear midpoint.
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Algorithm 2 Best bisector selection: Voting algorithm for selecting symmetry
axis curve.

1: procedure (mesh, pairs)
for i < 1 to pairs.size do
3 bisector < GENERATEBISECTOR(mesh, pairs[i].pl, pairs[i].p2)
4 result < 0
5 for j < 1 to pairs.size do
6: distance < MippoIiNTToBISECTOR(bisector, pairs|j])
7.
8
9

weight < GEODESICPATHLENGTH(pairs[j])

result < result + x distance

weight
: end for
10: results.append(result)
11: end for
12: return min(results)

13: end procedure

Fig. 8: (a) Pruning steps: (left) initial bisector in yellow with blue samples, (middle) matched
midpoints (orange) and their ray-cast counterparts, (right) mesh split into front (blue) and back
(magenta) via midpoint normals. Geodesic paths from each midpoint to its inverse and farthest
matches form the symmetry axis curve. (b) Final result after pruning (front: top, back: bottom).
Compare with top-left for improvement.

After refining the axis (Fig. 9-c), we discard same-side pairs and remove
others with low Dijkstra-based distance ratios (Fig. 9-d). We re-run Algorithm 2
to update matches and, if needed, the bisector. Figures 7-e and 8 show improved
accuracy with refined yellow axes and green/red mesh partitions.

Generate pair's Generate inverse Divide bisector region
midpoint midpoint (ray casting) front and back
Destroy points in
dc°""‘e°$f'”e bisector region far
midpoints of pairs away

(b)

.
. <3

N
o,

(c)

Flg 9: Pruning steps: (a) Initial mesh with overextended yellow bisector and matched pairs. (b)
Intermediate pruning. (c) Refined bisector aligned to the symmetry axis. (d) Final result after re-
moving incorrect matches.
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4 Results

In this section, we evaluate our algorithm on different datasets, SCAPE [1],
TOSCA [2] and Princeton [3], focusing on symmetry accuracy, area balance,
and runtime. Then, we discuss our ablation study which confirms Optimal Trans-
port’s benefit. Figure 10 shows robust results on diverse, imperfect meshes.

Sy Pt
HLE |

(a) SCAPE and TOSCA re- (b) Princeton results (¢) Modified results (miss-
sults ing parts)

Fig. 10: Results across SCAPE, TOSCA, and Princeton datasets. Our algorithm
consistently extracts coherent symmetry-axis curves.

Table 1: Performance change with parameters and comparative performance
summary.

(a) Using Different Parameters (b) Comparison with State-of-the-Art

(a) Area-based weighting (d) Overall dataset accuracy
Dataset[No Areal Area Dataset[LIRSD [21][FAISD [17][Ours
SCAPE| 92.52 [94.38 SCAPE 97.5 97.5 94.4
TOSCA| 89.21 [91.45 TOSCA 98 97.8 92.1

(b) Histogram count per vertex (¢) Mesh-level accuracy

Count | 1 | 3 | 5 | 7 | 10 | 20 |[Dataset|LIRSD [21][FAISD [17][Ours
SCAPE|[71.1/93.3[94.4[93.1]92.6]91.3|[SCAPE| 100 100 |98.6
TOSCA|[70.1|85.6/91.5|95.2]93.3[02.1|[LOSCA|  99.3 100 95.4

(c) Tteration count (f) TOSCA per-class rates

Teer Z 112341576 CClZiS LIR§?5 [21] FAIEI;6[17] ggrg
SCAPE [82]85[88|88(92(93 Centaur 10'0 10'0 10b
TOSCA|77]83|85(86|86(89 David 97.2 96.2 85.4
Dog 100 98.8 100

Horse 96.4 97.3 87.1

Michael 98.7 96.5 92.2

Victoria 97.8 96.2 84.1

‘Wolf 100 100 98.6

Gorilla 100 100 95.3

Our final results can be seen in Figure 10-a and Figure 10-b. Sampling AGD
maxima followed by six MGD extrema gave the best accuracy at higher cost.
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Area-weighting improved correspondence but reduced robustness on partial data.
Increasing histogram comparisons consistently boosted accuracy (Table 1c). Fol-
lowing [9] [17], a match is correct if error(k,m’) < &, with M as surface area
and N = 20; mesh-level accuracy reflects meshes with over 75% correct matches.
Accuracy improves with denser sampling, as well-distributed midpoints bet-
ter capture the true axis. Filtering limb matches, applying area-based weighting,
and pruning over-segmented curves further enhance results (Table 1a). Increas-
ing histogram comparisons boosts accuracy (Table 1b), though gains taper and
may fluctuate. Final results (Tables 1d, le, 1f) show competitive performance
against both the learning-based [21] and axiomatic FAISD [17] methods.

Figure 11 shows that while some

methods slightly outperform in cor-
é | respondence rate, our sampling cre-
ates more stable and accurate symme-
try axes. Using local extrema avoids
the upper-body clustering seen in [21]
[17] (Fig. 11-a,b). As these meth-
ods lack explicit axes, we reconstruct
them via midpoint chains. If their
area ratio drops below 60% and trails

Fig.11: (a) Symmetry axis curves on SCAPE: OUIS by over 10%) we regenerate it

ours (left), [21] (middle), [17] (right). Orange yusing our method (Fig. 11-c). Ta-

spheres show midpoints; blue lines indicate cor-
respondences. (b) Same for TOSCA. (c¢) Recon- bles 4-3 confirm better balance and

structed axis for [21] using our midpoint-joining 96% SCAPE accuracy.
protocol.

Table 2: Area ratios separated by the symmetry axis curve: Princeton dataset
(left) and aggregated/TOSCA data (right).

Table 3: Princeton dataset. Table 4: Overall dataset-level ratios.
Mesh/Method|LIRSD [21]|FAISD [17]| Ours
Human 8%.12 91.52  [96.27 ggfli% anzgfll FAIQSEQI”] 9%1.1;;
Cup 73.12 78.19 | 69.82 TOSCA | 92.89 93.75  |94.61
Glasses 92.53 93.14 193.78 Princeton|  91.71 90.60 [95.31
Ant 91.20 92.80 [94.41 : : :
Chair 91.45 82.56 |94.92
Octopus 94.91 88.43 93.81
Table 93.87 84.12 |94.80
Teddy 90.30 91.25 [92.49 Table 5: TOSCA class-level ratios.
Hand 89.90 88.92 |91.26 Name |LIRSD [21][FAISD [17]] Ours
Plier 92.86 93.46 |95.17
Fish 92.34 88.90 96.49 Cat 85.89 90.44 94.32
Bird 91.57 92.13 93.82 Centaur 93.45 91.41 95.21
Bust 92.70 84.43 94.32 David 89.13 92.80 93.24
Armadillo 93.25 94.17 |95.32 Dog 93.57 91.16 [94.71
Mech 89.91 91.75  |94.27 Horse 92.91 89.71 93.41
Bearing 92.18 93.15 192.32 Michael| 91.23 90.11 [92.91
F(‘)’jflzg %;?g Sg'ﬁ oyesl |Victoria|  92.80 96.81 |93.81
: . = ‘Wolf 94.21 93.70 98.60
Gorilla 91.80 90.11 95.32
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4.1 Parameters

We use fixed parameters across all experiments: HKS threshold 0.1, point-to-
midpoint 0.8, point-to-point over min-midpoint 0.2, and 5 histogram bins. HKS
is computed at t=200 using the 20 smallest eigenpairs.

4.2 Complexity

Table 6 outlines stage-wise costs. AGD and MGD involve Dijkstra per vertex,
yielding naive O(V3) time. We reduce this using a Fibonacci heap to O(V log V +
E), and further optimize by running Dijkstra from J < V farthest points [6].
Setting J = 100 ensures coverage, maintaining overall complexity at O(V log V +

Given K sampled points, we

form (12() candidate pairs. Each
Table 6: Asymptotic time complexities of pair’s bisector region is de-
stages. fined via two Dijkstra runs from
its midpoint. Histogram genera-
[ Sampling [ Histogram path _[Pruning] tion for Optimal Transport in-

[0(Vieg V + B)|O(K”P(Vieg V + E))| 0(1) |

volves P Dijkstra calls per pair
(one per path point), result-
ing in a dominant complexity of
O(K?P(VlogV + E)). To reduce cost, we optionally sample R < P points uni-
formly along the path, following the path augmentation strategy in [25], with
minor accuracy trade-offs.

Pruning is lightweight, requiring only two Dijkstra runs per sample pair. With
precomputed geodesic distances, time remains constant and space complexity is
O(K x V).

Time evaluation The algorithm scales with mesh size and sample count. A
single AGD pass and three MGD iterations yield accurate curves efficiently.
Table 7-a shows runtimes on an MSI GV62 8RE (i7-8750H) for sample meshes.

Table 7: Timing vs. MGD iterations on sample meshes.

Mesh / Iteration 3 5 9
SCAPE Human 8.3 34.8 162.6
TOSCA Cat 33.9 212.3 1722.8
Princeton Airplane 2.5 6.8 36.7

4.3 Ablation Study

We ablate histogram comparison metrics to assess their effect on geodesic-path—based
descriptors and the accuracy of point matching, detailed below.
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Motivation and Experimental Setup We use the log-variant of Optimal
Transport (OT) to compare histograms, as it offers minimal morphing cost and
outperformed L2, KL divergence, and Chi-Square in both robustness and effi-
ciency.

We evaluate on SCAPE, TOSCA, and Princeton using a fixed setup. Candi-
date pairs are generated by our pipeline, and histogram descriptors are computed
along geodesic paths. Each pair is compared using Lo, Chi-Square, and Earth
Mover’s Distance. Results appear in Tables 8a (area ratios) and 8b (correspon-
dence rates).

Table 8: Comparison of different histogram distance metrics.

(a) Area Ratios (b) Correspondence Rates
Dataset / Method| OT | L2 |Chi-Square|Earth Mover’s Dataset / Method| OT | L2 |Chi-Square|Earth Mover’s
SCAPE 96.58(92.78 94.46 89.12 SCAPE 94.38(91.84 92.96 89.41
TOSCA 94.61(90.15| 93.81 91.51 TOSCA 92.14(90.17| 89.48 91.73
Princeton 95.31(93.41| 91.90 92.73

Considering these Tables 8a and 8b, it is seen that the the method for both
correspondence rates and area ratios based on OT is the best solution among
other histogram comparison methods.

5 Discussion and Conclusion

5.1 Limitations and Possible Improvements

Our method struggles on uniformly curved

meshes where HKS lacks discriminative power

(Fig.12-a), and on multi-symmetric shapes

(Fig.12-b), where ambiguous correspondences

arise despite a correct axis—complicating ro-

tational symmetry detection.

(@) (b) Our single-axis design hinders multi-axial
cases, and repeated geodesic queries pose chal-
. lenges for real-time or high-res use.

Flg. 12: Failure cases on Princeton hil hod 1 d

meshes: (a) Incorrect axis due to curva- While our metho tolerates moderate

ture ambiguity on a cup. (b) Reasonable noise and partial cuts (Fig. 10-c), severe

axis on an octopus, but incorrect corre- . . .

spondences. point removal disrupts geodesic-based compu-
tations, limiting robustness for partial symme-
try extraction.

5.2 Future Work

Future work could extend our symmetry-axis extraction to automate mirroring
in graphics and CAD, enhance mesh segmentation, UV mapping, and material
placement, and support medical imaging and biomechanics. While our method
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targets a single dominant axis, hierarchical or multi-scale clustering could enable
multi-axis detection. Learning-based approaches may replace hand-crafted HKS
with CNN/GNN descriptors, while reinforcement learning could adapt parame-
ters for better generalization.

5.3 Conclusion

We present a method for extracting intrinsic symmetry axis curves on 3D meshes.
Starting with AGD and MGD sampling, we filter candidate pairs by geodesic
midpoints and HKS differences. For each pair, we construct bisector regions and
compare HKS histograms using logarithmic Optimal Transport, offering supe-
rior discrimination to area- or diameter-based descriptors. Matched curves are
refined via inverse ray casting and iterative pruning. Experiments demonstrate
competitive accuracy, robustness, and efficiency. Our approach offers a strong
foundation for future research in mesh symmetry and the official implementa-
tion can be found at [30].
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